
Real Time Operating System (RTOS) With Its Effective Scheduling Techniques| ISSN: 2321-9939

IJEDR1302020
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
92

Real Time Operating System (RTOS) With Its

Effective Scheduling Techniques

Panini A. Trivedi

V.V.P. Engineering College

Rajkot, Gujarat, India
Pahinitrivedi21@gmail.com

Abstract - A Real Time Operating System (RTOS)

comprises of two components, viz., “Real-Time” and

“Operating System”. Real-time systems are those systems

in which the correctness of the system depends not only on

the logical result of computation, but also on the time at

which the results are produced. RTOS are those which

must produce correct responses within a definite time

limit. A RTOS is any information processing system that

has to respond to externally generated signal within a

finite and specified period. It is a computer system where

the correct functioning of the system depends on the

results produced and the time at which they are produced.

Scheduling is the method by which threads, processes or

data flows are given access to system resources (e.g.

processor time, communications bandwidth).By use of

Proper techniques of scheduling, we can perform multiple

task in a given time.

Keyword - RTOS (Real Time Operating System),HRT(Hard Real

Time), Orchestration, RMS(Rate Monitoring Scheduling).

I. INTRODUCTION

 RTOS is an operating system that supports real-time

applications by providing logically correct result within the

deadline required. Basic Structure is similar to regular OS

but, in addition, it provides mechanisms to allow real time

scheduling of tasks. An Operating system (OS) is nothing but

a collection of system calls or functions which provides an

interface between hardware and application programs. It

manages the hardware resources of a computer and hosting

applications that run on the computer. An OS typically

provides multitasking, synchronization, Interrupt and Event

Handling, Input/ Output, Inter-task Communication, Timers

and Clocks and Memory Management. Core of the OS is the

kernel which is typically a small, high optimized set of

libraries.

 Though real-time operating systems may or may not

increase the speed of execution, they can provide much more

precise and predictable timing characteristics than general-

purpose OS. RTOS is key to many embedded systems and

provides a platform to build applications. All embedded

systems are not designed with RTOS. Embedded systems with

relatively simple/small hardware/code might not require an

RTOS. Embedded systems with moderate-to-large software

applications require some form of scheduling, and hence

RTOS.

 A real-time operating system (RTOS) is an operating

system (OS) intended to serve real-time application requests.

It must be able to process data as it comes in, typically without

buffering delays. Processing time requirements (including any

OS delay) are measured in tenths of seconds or shorter.

Fig. 1 RTOS Image

 A key characteristic of an RTOS is the level of its

consistency concerning the amount of time it takes to accept

and complete an application's task; the variability is jitter.

II. RTOS CLASSFICATION

RTOS specifies a known maximum time for each of the

operations that it performs. Based upon the degree of tolerance

in meeting deadlines, RTOS are classified into following

categories.

Hard real-time

Degree of tolerance for missed deadlines is negligible. A

missed deadline can result in catastrophic failure of the

system. An Hard Real Time (HRT) system is a system where

not meeting a deadline can have catastrophic effects. HRT

systems require a much more strict definition and could be

described as follow:

”An hard real time system is a system where the programmed

reaction to a stimulus is guaranteed to be completed within a

known finite time”.

http://www.engineersgarage.com/articles/operating-systems-tutorial

Real Time Operating System (RTOS) With Its Effective Scheduling Techniques| ISSN: 2321-9939

IJEDR1302020
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
93

Graph 1. Hard Real-Time

Firm real-time

Missing a deadly ne might result in an unacceptable quality

reduction but may not lead to failure of the complete system.

A single system may have both hard and soft real-time

Subsystems. In reality many systems will have a cost function

associated with missing each deadline.

Graph 2. Firm Real-Time

Soft real-time

Deadlines may be missed occasionally, but system doesn’t fail

and also, system quality is acceptable. A Soft real time system

is a system where not meeting a deadline can have undesirable

but not catastrophic effects, performance degradation for

example. SRTs could be described as follow:

”A soft real time system is a system where the programmed

reaction to a stimulus is almost always completed within a

known finite time”.

Graph 3. Soft Real-Time

III. FEATURES OF RTOS

An RTOS must be designed in a way that it should strike a

balance between supporting a rich feature set for development

and deployment of real time applications and not

compromising on the deadlines and predictability.

The following details describe the features of an RTOS

(Note that this list is not exhaustive). Context switching

latency should be short. This means that the time taken while

saving the context of current task and then switching over to

another task should be short.

The time taken between executing the last instruction of an

interrupted task and executing the first instruction of interrupt

handler should be predictable and short. This is also known as

interrupt latency. Similarly the time taken between executing

the last instruction of the interrupt handler and executing the

next task should also be short and predictable. This is also

known as interrupt dispatch latency.

Reliable and time bound inter process mechanisms should be

in place for processes to communicate with each other in a

timely manner.

An RTOS should have support for multitasking and task

preemption. Preemption means to switch from a currently

executing task to a high priority task ready and waiting to be

executed.

Real time Operating systems but support kernel

preemption where-in a process in kernel can be preempted by

some other process.

IV. SCHEDULING

Scheduling is the method by which threads, processes or

data flows are given access to system resources (e.g. processor

time, communications bandwidth). An RTOS has an advanced

algorithm for scheduling. Scheduler flexibility enables a

wider, computer-system orchestration of process priorities, but

a real-time OS is more frequently dedicated to a narrow set of

applications. Key factors in a real-time OS are

minimal interrupt latency and minimal thread switching

latency; a real-time OS is valued more for how quickly or how

predictably it can respond than for the amount of work it can

perform in a given period of time.

The scheduler is concerned mainly with:

 Throughput - The total number of processes that complete

their execution per time unit.

 Response time - amount of time it takes from when a

request was submitted until the first response is produced.

 Waiting Time - Equal CPU time to each process (or more

generally appropriate times according to each process'

priority). It is the time for which the process remains in

the ready queue.

V. RTOS TASK SCHEDULING TECHNIQUES

A. Preemptive Scheduling

Each Task has a priority relative to all other tasks. The

most critical Task is assigned the highest priority. The highest

priority Task that is ready to run gets control of the processor

.A Task runs until it yields, terminates, or blocks, Each Task

has its own memory stack. Before a Task can run it must load

its context from its memory stack

(this can take many cycles).

In this primitive scheduling model a task must be in one of

four states:

 Running – the task is in control of the CPU.

 Ready – the task is not blocked and is ready to receive

control of the CPU when the scheduling policy

indicates it is the highest priority task in the system

that is not blocked.

 Inactive – the task is blocked and requires

initialization in order to become ready.

Blocked – the task is waiting for something to happen or for a

resource to become available.

Typical RTOS Task Model

Typical RTOS based on fixed-priority preemptive scheduler,

Assign each process a priority. At any time, scheduler runs

highest priority process ready to run. Process runs to

completion unless preempted.

Real Time Operating System (RTOS) With Its Effective Scheduling Techniques| ISSN: 2321-9939

IJEDR1302020
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
94

Fig. 2 Typical RTOS Task Model

Priority-based Preemptive Scheduling always runs the highest-

priority runnable process.

Fig. 3 Priority-based Preemtive Scheduling

A. Cyclic Scheduling

This is an important way to sequence tasks in a real-time

system. Cyclic scheduling is static computed offline and

stored in a table.

Non-periodic work can be run during time slots not used by

periodic tasks, implicit low priority for non-periodic work.

Usually non-periodic work must be scheduled pre-emptively.

Fig. 4 Example of Cyclic Scheduling

B. Round Robin (Time Sliced) Scheduling

Round robin means that each ready task runs turn by turn only

in a cyclic queue for a limited time slice,

Where,

Round robin is a hybrid model of clock-driven model (for

example cyclic model) as well as event driven (for example,

pre-emptive).A real time system responds to the event within a

bound time limit and within an explicit time.

A round-robin rotation can happen because of the

following events:

The currently executed thread voluntarily invokes

the chThdYield () API in order to allow the execution of

another thread at the same priority level, if any.

The currently executed thread voluntarily goes into a

sleep state, when the thread is awakened it goes behind any

other ready thread at the same priority level.

The currently executed thread is preempted by a higher

priority thread; the thread is reinserted in the ready list behind

any other thread at the same priority level.

If the CH_TIME_QUANTUM configuration constant is set to

a value greater than zero and if the specified time quantum

expired and if a thread with equal priority is ready then the

currently executing thread is preempted and reinserted in the

ready list behind any other thread at the same priority level.

 Round-Robin Analysis

If there are n processes in the ready queue and the time

slice is q, then each process ideally would get of the CPU

time in chunks of q time units, and each process would wait no

longer than nq time units until its next quantum. A more

realistic formula would be n(q+o) where o is the context

switch overhead. So, for practical purposes, it is desirable that

the context switch be negligible compared to the time slice.

The performance of the Round-Robin algorithm depends

heavily on the size of the quantum. If the quantum is very

large, the Round-Robin algorithm is similar to the First-Come,

First-Served algorithm. If the quantum is very small, the

Round-Robin approach is called processor sharing.

C. Rate-Monotonic Scheduling

Rate Monotonic Scheduling is Common way to assign

priorities.Processes with shorter period given higher priority.A

set of n independent tasks scheduled by the rate monotonic

algorithm. will always meet its deadlines, for all task

phasing’s, if

Where

 = deterministic computation time of each

task

 Tn = period of particular task

 () = Scheduling bound, the maximum

fraction of processor utilization allowable

for n tasks: U(n) = 1 or 100%

The utilization bound (UB) test allows schedulability

analysis by comparing the calculated utilization for a set of

tasks and comparing that total to the theoretical utilization for

that number of tasks:

If this equality is satisfied, all of the tasks will always meet

their deadlines. If the total utilization calculates to greater than

100%, the system will have scheduling problems.

Real Time Operating System (RTOS) With Its Effective Scheduling Techniques| ISSN: 2321-9939

IJEDR1302020
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
95

Utilization Bound Test

 Assumes rate monotonic priority assignment, Task with

smaller period is assigned higher priority, Guaranteed to be

schedulable if test succeeds.

In computer science, Rate-Monotonic Scheduling is

a scheduling algorithm used in real-time operating

systems with a static-priority scheduling class. The static

priorities are assigned on the basis of the cycle duration of the

job. The shorter the cycle duration is, the higher is the job's

priority.

These operating systems are generally preemptive and

have deterministic guarantees with regard to response times.

Rate monotonic analysis is used in conjunction with those

systems to provide scheduling guarantees for a particular

application.

Liu & Layland (1973) proved that for a set of n periodic tasks

with unique periods, a feasible schedule that will always meet

deadlines exists if the CPU utilization is below a specific

bound (depending on the number of tasks). The schedulability

test for RMS is:

Where,

Ci is the computation time,

Ti is the release period (with deadline one period later), and

 n is the number of processes to be scheduled.

For example U ≤ 0.8284 for n = 2. When the number of

processes tends towards infinity this expression will tend

towards:

So a rough estimate is that RMS in the general case can meet

all the deadlines if CPU utilization is 69.3%. The other 30.7%

of the CPU can be dedicated to lower-priority non real-time

tasks. It is known that a randomly generated periodic task

system will meet all deadlines when the utilization is 85% or

less, however this fact depends on knowing the exact task

statistics (periods, deadlines) which cannot be guaranteed for

all task sets.

VI. CONCLUSIONS

Real-time systems have benefitted from a wealth of

research in all areas of operating system design. Because of

the temporal requirements of real-time tasks, traditional

operating system design principles, algorithms, and

techniques do not directly apply. As a result, every area of

operating system research has needed extension into the

real-time domain. Scheduling, memory management,

process communication, file systems, networking, power

management, garbage collection, fault tolerance, security,

and many other aspects have been researched with real-time

systems in mind, and a significant amount of progress has

been made. The benefits of using real-time models are very

real, and absolutely necessary for some tasks.

VII. REFERENCES

[1] Cyprian F. Ngolah, Yingxu Wang, and Xinming Tan

“IMPLEMENTING TASK SCHEDULING AND

EVENT HANDLING IN RTOS+” Univ. of Calgary,

2500 University Drive NW, Calgary, AB, Canada T2N 1N4.

[2] Arezou Mohammadi and Selim G. Akl “Scheduling

Algorithms for Real-Time Systems” School of

Computing, Queen’s University, Kingston, Ontario,

Canada

K7L 3N6, July 15, 2005.

[3] Jiangtao Wu, Xiang Long, and Lei Wang “Safety

mechanism of RTOS on multi-core processor” State Key

Laboratory of Software Development Environment,

School of Computer Science and Engineering, Beihang

University, Beijing, China. 2011 International Conference

on System Science, Engineering Design and

Manufacturing Informatization.

[4] Jonathan L. Herman, Christopher J. Kenna,Malcolm S.

Mollison,,James H. Anderson and Daniel M. Johnson

“RTOS Support for Multicore Mixed-Criticality Systems

∗” The University of North Carolina at Chapel Hill,

Northrop Grumman Corp.

2012 IEEE 18th Real Time and Embedded Technology

and Applications Symposium.

[5] Xiongli Gu , Peng Liu , Mei Yang , Jie Yang , Cheng Li ,

Qingdong Yao “An efficient scheduler of RTOS for

multi/many-core system” Department of Information

Science and Electronic Engineering, Zhejiang University,

Hangzhou, China Department of Electrical and Computer

Engineering, University of Nevada, Las Vegas, United

States.

http://en.wikipedia.org/w/index.php?title=Schedulability_test&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Schedulability_test&action=edit&redlink=1

