
Implementation of Spectral Angle Mapper (SAM) Algorithm on a Graphic processing unit (GPU)| ISSN: 2321-9939

IJEDR1302026
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
122

Implementation of Spectral Angle Mapper (SAM)

Algorithm on a Graphic processing unit (GPU)

Balaji Vengatesh M.

 Information Technology, SRM UNIVERSITY, Chennai, India
balajivengatesh1991@gmail.com

Abstract— The Need for Hyper spectral Images for Exploration

of Oil and Other Minerals are so massive. We can tap the high

computational power available now for faster tracking of those

minerals underneath. In this paper, we Implement an Algorithm

called Spectral angle mapper(SAM) using compute unified device

architecture(CUDA) framework on a GPU. The SAM algorithm

is fit for parallel and distributed computing, but we use a

Graphic processing unit to implement it in parallel. This paper

studied the balance between resource acquirement of each thread

and the number of active blocks, and the impact of

computational complexity on speedup. We also Improved the

SAM algorithm to use several training samples instead of one. At

the end of this paper we show quantitative results of comparison

on speedup with the earlier use of ENVI, the only software for

the analysis of hyper spectral images with our latest

implementation on CUDA.

Index Terms—ENVI, CUDA

I. INTRODUCTION

In recent years several efforts were directed towards

incorporating high performance computing in remote sensing

missions. A relevant example of the use of HPC techniques

(such as parallel and distributed computing) is hyper spectral

remote sensing, in which an imaging spectrometer collects

hundreds or even thousands of measurements (at multiple

wavelength channels) for the same area on the surface of the

earth [1]–[3]. Antonio et al. Researchers have been done

already on this with other specialized hardware devices such

as FPGA and other GPUs. Algorithms such as pixel purity

index(PPI),Principal Component analysis(PCA) were already

implemented on a GPU with Compute unified device

architecture(CUDA) and achieved significant speedups [1].

Yang et al. [7], [8] implemented SAM algorithm based on

CUDA using a specific pixel value as reference spectra

without transferring image data asynchronously. Lu and Park

et al. [9]–[11] researched the key factors in design and

evaluation of image processing algorithms on the massive

parallel GPU using CUDA and proposed metrics to show the

suitability in predicting the effectiveness of an application for

parallel implementation. Now the GPU architecture with low

cost, low power dissipation is gathering more attention than

onboard real time analysis of remote sensing data.

 SAM algorithm is a classical identification or classification

method for hyper spectral data, which is suitable for parallel

and distributed computing without any mutual influences

between different pixels in computing spectral angle [8].

 A plurality of spectral angles between spectrum of each

pixel and training samples of the same class are calculated in

the first. If the maximum spectral angle is larger than a certain

threshold, this pixel is regarded as a target pixel. In the actual

operation, we use morphological erosion when extracting

training samples so that the mixed pixels are omitted.

Similarly, morphological opening operation is performed after

recognition to eliminate noise. Here, it is taken as an example

to illustrate the parallel implementation based on GPU and

distributed clusters.

II. KEY TECHNIQUE

In this section we introduce spectral angle mapper

algorithm , the mathematical implementation and finally the

implementation in CUDA.

Fig.1. A hyper spectral image pixel and reference spectra

A. SAM Algorithm for Target Detection

SAM algorithm is an identification method that maps the

target on the image by calculating the spectral similarity

between the image spectra and the reflectance spectra.

Reflectance spectra are readily available or it should be taken

from the image itself or extracted from the laboratory setting.

The spectral similarly is calculated by calculating the angle

between the two spectra by considering the vectors in n-

dimensional space. This method is rapid to identify the targets

on any given hyper spectral image. It is one of the robust

techniques because it restrains the influence of shading effects

to accentuate the influence of target reflectance characteristics.

B. Sequential Implementation of SAM

Spectral angle mapping is the most time consuming part of

the entire algorithm. So we apply parallel methods to accelerate

this

The Original serial implementation is as follows

1) Record all bands of values through triple loop for

each spectrum

2) Calculate spectral angle between the current pixel

and the reference spectra

3) Combine computational results

From Fig.1 the source hyper spectral data is shown as a

three dimensional matrix data (MxNxL M lines of source

Implementation of Spectral Angle Mapper (SAM) Algorithm on a Graphic processing unit (GPU)| ISSN: 2321-9939

IJEDR1302026
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
123

data,N columns of source data, L bands of source data) Matrix

A (MxL) comes from a slice of source data and Matrix B

stands for training samples coming from source data (IxJ,

I:bands of reference spectra, J:number of samples). The

matching process will be conducted by using the following

formula:

 Where nb represents the number of bands

Algorithm:

For i ROW= 1~N;

For i Column=1~N

Spectra for compare  Spectrum of pixel(iRow,iColumn)

Calculate α between spectra for compare and each training

sample by (1)

Find max α

Compare to threshold

Record the result

End

End

C. Parallel implementation of SAM

As the main goal of this paper lies in parallel

implementation to achieve speedup, I describe the

implementation method using CUDA. The implementation can

be clearly explained with a flow chart. But before that we have

created a step by step procedure of the process as follows

1) Load the image data into memory

2) Initialize the GPU device

3) Create Streams and Initialization

4) Create events ,i.e. monitor the device progress and

record exact execution time

5) Load m kernels corresponding to the lines of

source data

6) Run the kernels with the image for process.

As the main aim of our implementation is only to achieve

speedup. We rely on the SIMD devices for performance.

GPU’s have massive amount of threads more than a CPU to

process data. Every pixel gets processed in a different thread,

according to our implementation. The stream function of

CUDA platform allows us to occupy both the computational

engine and the data transfer engine simultaneously so the

whole task is divided into several pieces each for a single

stream. Within the stream, all the steps are executed

sequentially, but the executing sequence between streams are

generally random. While one stream is computing, another can

begin its data transfer step at the same time. So that the data

transfer latency can be covered.

III. EXPERIMENTALRESULTS

A. Experimental Setup

1) Experimental Data: The source hyper spectral Data

(400: lines of source data, 400: columns of source

data, 224: bands of source data) is a low altitude

AVIRIS image whose resolution is3.5 m and

radiation wavelengths is from 0.4–2.5 m. The truth

map is extracted from the original image.

2) Software Environment: Operating System: Windows

7

3) Development platform: CUDA 4.0

4) Hardware Environment: GPU: NVIDIA GTX 560,

INTEL CORE I5 3.2GHZ PROCESSOR

B. Experimental Results

Different parallel architectures are fit for different

application environments. Even though under the same

parallel architecture, different speed-up ratios can be

achieved by using different parameters [16]. In order to

obtain comparable data, several group experiments have

been conducted. The results are given

TABLE I

COMPUTATIONAL TIME FOR CPU AND GPU(MS)

IS THERE A SLICE?

Load Source Data to CPU

Initialize GPU streams and Events

Transfer data to GPU device

Get a Pixel from CUDA array

Compute SAM with refspec

Write result to global memory

Transfer Result to Host

Y

N

Implementation of Spectral Angle Mapper (SAM) Algorithm on a Graphic processing unit (GPU)| ISSN: 2321-9939

IJEDR1302026
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR

 Website: www.ijedr.org | Email ID: editor@ijedr.org
124

Fig.2.Influence of Streams

To make the efficient of page-locked memory clear, we set

the number of training sample as 1. The experimental results

are given in Table II.

Time 1: time needed for SAM computation;

Time 2 : total time (for GPU: computation times add

data transmission time between host-memory and device-

memory);

A: CPU running time based on C code

B–G: GPU running time

B: program in which thread assignment is not optimized

C: after optimization of thread assignment

D: page-locked memory is introduced

E: page-locked memory is introduced and threads assignment

Optimized

F: stream and page-locked memory are all introduced

and thread assignment optimized

G: the executing time of F on Tesla S2050

It is obvious to draw the conclusion from the chart above

that the thread allocation and the CPU and GPU asynchronous

collaborative work mode have an efficient impact on the

performance of the program. Due to the increased data transfer

bandwidth and number of computing cores, Tesla reaches a

higher acceleration performance than GTX 560.

The experiments in this section demonstrate that the

stream-based algorithm in the CUDA platform accelerates

SAM process the most, yielding an optimized executing time

of 54.87 ms. Thread assignment and stream number impact

speedup a lot. Graphics devices are more suited to compute-

intensive applications.

REFERENCES

[1] A. Plaza, Q. Du, and Y.-L. Chang, ―High performance

computing for hyperspectral remote sensing,‖ IEEE J. Sel.

Topics Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 529–

543, Sep. 2011.

[2] C. A. Lee et al., ―Recent developments in high performance

computing for remote sensing: A review,‖ IEEE J. Sel. Topics

Appl. Earth Observ. Remote Sens., vol. 4, no. 3, pp. 508–527,

Sep. 2011.

[3] A. Plaza et al., ―Recent advances in techniques for hyperspectral

image processing,‖ Remote Sens. Environ., vol. 113, pp. S110–

S122, 2009.

[4] A. Plaza et al., ―Improving the performance of hyperspectral

image and signal processing algorithms using parallel,

distributed and specialized hardware-based systems,‖ J. Signal

Process. Syst., vol. 61, pp. 293–315, 2010.

[5] A. Plaza et al., ―An experimental comparison of parallel

algorithms for hyperspectral analysis using heterogeneous and

homogeneous networks of workstations,‖ Parallel Computing,

vol. 34, pp. 92–114, 2008.

[6] A. Plaza and C.-I. Chang, High Performance Computing in

Remote Sensing. Boca Raton, FL, USA: Taylor & Francis, 2007.

[7] J. Yang, Y. Zhang, and G. Dong, ―Investigation of parallel

method of RS image SAM algorithmic based on GPU,‖ Science

of Surveying and Mapping, vol. 35, no. 3, pp. 9–11, May 2010.

[8] X. Liu and Y. Kang, ―Algorithm of spectrial angle parallel

classification on remote sensing image,‖ Computer Science, vol.

36, no. 9, pp. 267–269, Sep. 2009.

[9] F. Lu and J. Song, ―Survey of CPU/GPU synergetic parallel

computing,‖ Computer Science, vol. 38, no. 3, pp. 5–9, Mar.

2011.

[10] I. K. Park et al., ―Design and performance evaluation of image

processing algorithms on GPUs,‖ IEEE Trans. Parallel Distrib.

Syst., vol. 22, pp. 91–104, Jan. 2011.

[11] D. Castaño-Díez et al., ―Performance evaluation of image

processing algorithms on the GPU,‖ J. Structural Biology, vol.

164, pp. 153–160, Oct. 2008.

[12] E. Christophe, J. Michel, and J. Inglada, ―Remote sensing

processing: From multicore to GPU,‖ IEEE J. Sel. Topics Appl.

Earth Observ. Remote Sens., vol. 4, no. 3, pp. 643–652, Sep.

2011.

[13] W. Fang, Q. Luo, and N. K. Govindaraju, ―Mars:

AcceleratingMapReduce with graphics processors,‖ IEEE

Trans. Parallel Distrib. Syst., vol. 22, no. 4, pp. 608–620, Apr.

2011.

[14] J. Sanders and E. Kandrot, CUDA by Example: An Introduction

to General- Purpose GPU Programming. Boston, MA, USA:

Pearson Education, 2010.

[15] D. B. Kirk andW.-M.W. Hwu, Programming Massively Parallel

Processor: A Hands-On Approach.

NewYork,NY,USA:ElsevierScience & Technology, 2010.

[16] G. M. Striemer and A. Akoglu, ―Sequence alignment with GPU:

Performance and design challenges,‖ in IEEE Int. Symp.

Parallel & Distributed Processing, May 2009, pp. 1–10.

[17] S. Ryoo et al., ―Optimization principles and application

performance evaluation of a multithreaded GPU using CUDA,‖

in Proc. 13th ACM SIGPLAN Symp. Principles and Practice of

Parallel Programming, Feb. 20–23, 2008, pp. 73–82.

[18] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, and K.

Skadron, ―A performance study of general-purpose applications

on graphics processors using CUDA,‖ J. Parallel Distrib.

Comput., vol. 68, no. 10, pp. 1370–1380, Oct. 2008.

[19] P. Harish and P. J. Narayanan, ―Accelerating large graph

algorithms on theGPU using CUDA,‖ in High Performance

Computing—HiPC2007, Berlin/Heidelberg, Germany, 2007,

Springer, ser. Lecture Notes in Computer Science.

[20] B. Huang et al., ―Development of a GPU-based high-

performance radiative transfer model for the infrared

atmospheric sounding interferometer (IASI),‖ J. Computational

Physics, vol. 230, pp. 2207–2221,2011.

[21] J. Mielikainen, B. Huang, and A.-L. Huang, ―GPU-accelerated

multiprofile radiative transfer model for the infrared

atmospheric sounding interferometer,‖ IEEE J. Sel. Topics Appl.

Earth Observ. Remote Sens., vol. 4, no. 3, pp. 691–700, 2011.

