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Abstract - Electric energy is an essential resource in today's 

life. So we are try to solving Challenge ROADEF/EURO 2010: 

A large-scale energy management problem with varied 

constraints. No matter if we make our first cup of coffee or tea 

in the morning or run a multi-million euro business, all the 

time we rely on a secure and inexpensive supply of electricity. 

Our goal is to full the respective demand of energy over a time 

horizon of several years, with respect to the total operating cost 

of all machinery. Determining optimal maintenance schedules 

and production plans is not easy because of the number of 

alternatives to assess. As the exact electricity demand of each 

forthcoming day is unknown and depends on a large variety of 

factors, this leads to the need of multiple uncertainty scenarios. 

Additionally, the increasing proportion of renewable energies 

in today's energy mix makes things more complicated for an 

utility company, because it has to feed the energy of third-

party solar or wind power plants into its electricity networks 

and regulate its own power plants accordingly.  The examined 

problem comprises three fields of optimization: maintenance 

scheduling, production planning and determining refueling 

amounts. It is a tactical model, neither considering short-term 

operational restrictions (like intraday load following) nor 

containing strategic decisions (like adding new power plants). 

However, the proposed model allows a generic formulation of 

other concerns like electricity network stability, safety 

considerations, availability of staff and tools, as well as legal 

restrictions. All of these limitations can be expressed as 

mathematical constraints. Here we are using genetic 

algorithms to solve its problem.  

 

Genetic algorithms are based on the underlying genetic process 

in biological organisms and on the natural evolution principles 

of populations. These algorithms process a population of 

chromosomes, which represent search space solutions, with 

three operations: selection, crossover and mutation. Under its 

initial formulation, the search space solutions are coded using 

the real coding. In this paper we review the features of real 

coded genetic algorithms. Different models of genetic operators 

and some mechanisms available for studying the behavior of 

this type of genetic algorithms are revised and compared. 

 

Keywords: Genetic algorithms, Real coding, Continuous 

search spaces.  

I. INTRODUCTION 

In this work we are solving challenge, which was 

proposed at the ROADEF/EURO Challenge 2010, a 

competition announced by the French Operational Research 

and Decision Support Society (ROADEF) and the European 

Operational Research Society(EURO). Her we take the 

perspective of a large utility company, tackling their 

problems in modeling and planning production assets, i.e., a 

multitude of power plants. The goal is to fulfill the 

respective demand of energy over a time horizon of several 

years, with respect to the total operating cost of all 

machinery. Determining optimal maintenance schedules and 

production plans is not easy because of the number of 

alternatives to assess. The scheduling of outages has to 

comply with various constraints, regarding safety, 

maintenance, logistics and plant operation while it must lead 

to production programs with minimum costs[8]. 

II. PROBLEM STATEMENT 

Her we introduce a model for medium-term electricity 

production planning utilizing a large set of power plants. As 

it is a tactical model. The model extends over a period of 

time. This period is split into uniform time steps of 

configurable length. The two first class entities of our model 

are a set of various power plants and a set of uncertainty 

demand scenarios. For each scenario we are looking for a 

production assignment, such that the sum of energy 

produced by all available power plants equals the demand 

during each time step. The need for multiple scenarios arises 

from the numerous uncertainties that have to be taken into 

account. In our model there are two very different types of 

facilities. Power plants of the first type can operate 

continuously and their fuel supply is outside the scope of 

our problem. During each time step they can produce an 

amount of energy in an interval depending on the scenario 

and time step. We call them Type-1 power plants.  

Production at these power plants induces cost that is 

proportional to the power output of a plant and also depend 

on the scenario and time step. Power plants of this type 

might be coal- or gas-fired or even virtual power plants for 

exporting and importing energy, whose available power 

levels and unit cost we cannot influence. The other type of 

power plants, called Type-2 power plants, has to be shut 

down for refueling and maintenance regularly. As the plants 

have only limited capacities to store fuel and running out of 

it would stop the production of energy, these power plants 

have to be refueled regularly. Refueling can only take place 

when a power plant is offline for several weeks. Hence, the 

operation of a Type-2 power plant is organized in cycles - 

successions of an offline period and the following 

production campaign. In the model, the fuel unit cost 

depends on the cycle and power plant. For each Type-2 

power plant a number of (fuel-related) production 

constraints apply. To conclude, the proposed subject 

consists of modeling the production assets and finding an 

optimal outage schedule. It includes two dependent 

subproblems [7]: 

1. Determine a schedule of plant outages. This schedule 

must satisfy the given constraints in order to comply with 

limitations on resources, which are necessary to perform 

refueling and maintenance operations. 

2. Determine an optimal production plan to satisfy demand. 
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The objective is to minimize the expected cost of 

production. 

 

Sets 

• I: Set of type 2 plants (nuclear). Indexed by i. 

• J: Set of type 1 plants (other thermal). Indexed by j. 

• T : Set of time steps. Indexed by t. 

• W: Set of weeks. Indexed by w. 

• S: Set of scenarios. Indexed by s. 

• Ki: Set of cycles for each plant i ∊ I. 

 

Global Parameters 

 

 DEMs,t : Demand to satisfy for scenario s and time step 

t 

 D: Length of a time step (all time steps have equal 

length) 

 

Parameters of each Type-1 Power Plant j 

 

 PMINs,tj : Minimum production level during time step 

t of scenario s 

 PMAXs,tj :  Maximum production level during time 

step of  scenario s 

 Cs,tj : Cost of production per unit during time step t of 

scenario s 

 

Parameters of each Type-2 Power Plant i 

 

 PMAXti : Maximum production level during time step t 

in    all scenarios 

 XIi : Initial fuel level (i.e., in time step 0) 

 Ci,T : Discount per unit for residual fuel at the end of 

the time horizon 

 

The following parameters are provided for each 

cycle k of a Type-2 power plant: 

 

 DAi,k : Duration of the outage in weeks 

 Ci,k : Cost of refueling per unit during this cycle's 

outage 

 RMINi,k : Minimum refueling amount 

 RMAXi,k: Maximum refueling amount 

 MMAXi,k : Maximum modulation over production 

campaign 

 Qi,k : Refueling coefficient 

 BOi,k : Fuel level threshold activating the imposed 

power profile for this campaign 

 PBi,k : Decreasing power profile 

 ∊ : Tolerance for the imposed power profile 

 AMAXi,k : Upper bound of fuel level before refueling 

 SMAXi,k: Upper bound of fuel level after refueling 

 

Constants 

CT1: coupling load and production 

           

         ∑pj,s,t + ∑ pi,s,t     = DEM s,t          s ∊ S; t∊T                                      

               j∊J           i∊I     

                

                    

CT2: Bound of production type 1 plant 

 

         PMINs,tj≤pj,s,t≤PMAXj,s,t                     j∊J;s∊S;t∊T 

 

CT3: Offline power 

         

           Pi,s,t=0                                   i ∊ I; s∊S;t∊T 

 

CT4: Bound of production of type 2 plant 

 

         0≤pi,s,t≤PMAXti                       i∊ I;s∊S;t∊T 

 

CT5:Maximum power after power profil imposition 

 

   (x(i,s,t)<BOi,k^(x(i,s,t)<PBi,k(x(i,s,t).PMAXit.D)=>  

                                                                           pi,s,t =0 

 

CT6: Bounds of refueling 

     

          RMINi,k ≤ ri,k ≤ RMAXi,k                      i ∊ I;k ∊ K 

 

CT7: Initial fuel level 

 

        X(i,s,0) = XIi                                          i ∊ I; s∊ S    

 

CT8:Fuel level variation during production campaing 

       

      x(i,s,t+1) = x(i,s,t) – pi,s,t .D      i ∊ I; s∊ S; t∊ T 

 

CT9: Fuel level variation during outage 

 

 x(i,s,t
-
i,k + 1) = ((Qi,k -1)÷Qi,k)(x(i,s,t

-
i,k) – BOi,k-1)+  

                              ri,k + BOi,k                i ∊ I; s∊ S; t∊T      

 

 

CT10: Fuel level bounds around refueling 

                

  0≤ x(i,s,ti,k) ≤ AMAXi,k 

         

           x(i,s,ti,k)≤SMAXi,k                                                 

 

                             i ∊ I; s∊ S; k ∊ K     

 

CT11:   Maximum modulation over a cycle  

                  

            ∑x(i,s,t) ≥BOi,k  (PMAXti  - pi,s,t) .D ≤ MMAXi,k                      

                                                                  i ∊ I; s∊ S; k ∊ K 

CT12: Outage scheduling constraint 

                  

        TAi,k ≠ -1 =>  TOi,k ≤ hai,k ≤ TAi,k      

         TAi,k = -1 =>    hai,k = -1 ˅ TOi,k ≤ hai,k 

 

CT13: Oder of outage 

  

              hai,k ≠ -1  => hai,k-1 + DAi,k-1 ≤ hai,k 

                      hai,k-1=-1=>hai,k=-1                                 i ∊ I;k ∊ K    

 

CT14: Minimum spacing / maximum overlapping between 

outages 

 

 A:  set of considered Type -2 power plants 
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 Se: Duration in weeks of minimum authorized spacing. 

Negative values are interpreted as maximum authorized 

overlapping. 

         

(hai,k- hai’,k’ –DAi’,k’ ≥ Se) ˅(hai’,k’ – hai,k –DAi,k 

≥ Se)              

                                                                 i,i’∊A;k,k’ ∊K;i 

≠i’ 

 

CT15:    Minimum spacing/Maxium overlapping 

between outages during a specific period 

               

 ID: First week of specific period 

 IF: Last week of specific period 

     

(ID – DA i,k +1 ≤hai,k ≤ IF)˄(ID – DAi’,k’+1 ≤ hai’,k’ ≤ 

IF) =>  

                  (hai,k – hai’,k’ – DAi’,k’ ≥ Se)˅                 

                       (hai’,k’- hai,k – DAi,k ≥ Se) 

                              i,i’∊A;k,k’ ∊K;i ≠i’   

                                                            

CT16:  Minimum spacing between decoupling dates 

      

                  |hai,k – hai’,k’| ≥Se                                                   

                                                   i,i’∊A;k,k’ ∊K;i ≠i’   

  

CT17:  Minimum spacing between coupling dates 

      

              |hai,k + DAi,k –hai’,k’ –DAi’,k’| ≥ Se                                         

                                                     i,i’∊A;k,k’ ∊K;i ≠i’   

   

CT18:  Minimum spacing between decoupling and 

coupling dates                   

                                            

         |hai,k+DAi,k – hai’,k’|≥ Se       i,i’∊A;k,k’∊K;i ≠i’ 

        

CT 19:  Limited resources 

      

 Li,k: First week of resource usage (0≤ Li,k < DAi,k)  

 TUi,k: Time of usage of the resource in weeks (0≤ TUi,k; 

Li,k + TUi,k ≤ DAi,k) 

 Q: Available quantity of  the  resource 

 

∑ 1([hai,k + Li,k, hai,k + Li,k +TUi,k),w)≤Q                         

i∊A 

k∊K                                   

                                          w∊W          

 

CT 20: Maximum number of outage during a giving 

week 

 

              H: Considered week 

              N: maximum number of outage during this 

week 

 
                       ∑ 1([hai,k,hai,k+ DAi,k),H)≤ N 

                                                                           i∊A k∊K 

 
CT21:  Maximum offline power capacity during a 

specific period 

      

 ID: First time step of period 

 IF: Last time step of period 

 IMAX: Maximum offline power capacity 

 

∑ PMAX
t
i ≤ IMAX                                   t∊T;ID≤t≤IF 

i∊A 

t∊T 

        
                              Objective Function 

 ∑ ∑Ci,k.ri,k + (1/|S|)∑(∑( ∑Cj
s,t

.pj,s,t.D) -    ∑Ci,T.x(i,s,T) 

) 

  i∊ I   k∊K                                  s∊S  t∊T  j∊J                           i∊I 

  PP2 refuling cost                       PP1 production cost              PP2 residual fuel refund 

                                                                      

III. REVIEW WORK 

 

1. Author present the solution of the given problem by 

Local search for mixed-integer nonlinear optimization 

methodology has been design to solve various industrial 

problem. The first particularity of our local search is to 

be pure and direct. Indeed, no decomposition is done; 

the problem is tackled frontally. In particular, the 

specificity of our local search is to be highly 

randomized, in order to avoid bias while exploring the 

search space. Such a diversification of the search is 

obtained by exploring in a first-improvement fashion a 

large variety of randomized neighborhoods. The union 

of these (small) randomized neighborhoods induces in 

effect a very large neighborhood, allowing to onverge 

in practice combinatorial and continuous parts of the 

problem are treated together: combinatorial and 

continuous decisions can be simultaneously modified 

by a move during the search. By avoiding 

decompositions or reductions, no solution is lost and 

the probability to find good-quality ones is increased. 

Then, no hybridization is done: no particular 

metaheuristic is used. Then, the second toward high-

quality local optima despite hard constraints. Finally, its 

third specificity is to be very aggressive: millions of 

feasible solutions are visited within the time limit. 

Indeed, randomized local search is a nondeterministic, 

incomplete exploration of the search space. Therefore, 

exploring a huge focused on: designing a large variety 

of randomized moves allowing an effective exploration 

of the search space, and speeding up the evaluation of 

these moves. In a mixed-integer optimization context, 

these two points are declined as follows. 

 

First, the moves are designed in order to treat together 

the combinatorial and continuous dimensions of the 

problem. For this, discrete and continuous decisions are 

simultaneously modified by the moves during the 

search. Then, a difficulty arises: recovering the 

feasibility of the continuous part of the solution for 

evaluating the move. It imposes to be able to solve the 

continuous subproblem, which is generally very time-

consuming. That is why the second point is 

concentrated on implementing an incremental 

randomized combinatorial algorithm for solving 

approximately but very efficiently the continuous 

subproblem [1]. Number of (feasible) solutions during 
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the allocated time augments the probability to find 

good-quality solutions. Our local-search heuristics are 

composed of three layers: general heuristic, moves, 

evaluation machinery. The evaluation machinery forms 

the engine of the local search; it computes the impacts 

of moves on constraints and objectives during the 

search. 

 

2. Author present a Benders decomposition based 

framework for solving the problem. Because of the 

nature of the problem, not all constraints can be 

modelled satisfactorily as linear constraints and the 

approach is therefore divided into two stages:  

 

in the first stage Benders feasibility and optimality cuts 

are added based on the linear programming Relaxation 

of the Benders Master problem, while in the second 

stage feasible integer solutions are enumerated and a 

procedure is applied to each solution in an attempt to 

make them satisfy the constraints that are not included 

in the mixed integer program. A number of experiments 

are performed on the available benchmark instances. 

These experiments show that the approach is 

competitive on the smaller instances, but not for the 

larger ones. We believe the exact approach gives 

insight into the problem, and additionally makes it 

possible to find lower bounds on the problem, which is 

typically not the case for the competing heuristics[2]. 

 

3. Author discuss here about constraint programming to 

solve optimizing problem. Constraint programming 

(CP) is a declarative programming paradigm and is a 

powerful method for solving combinatorial problems. 

CP has proven to be useful in many other fields of 

combinatorial optimization such as electrical 

engineering, molecular biology, and natural language 

processing. As a declarative paradigm, CP formulations 

define the properties of a solution to be found rather 

than specifying the exact sequence of the steps to 

execute. These properties can be stated as simple 

logical conditions (e.g., "A =>B"), relational constraints 

(e.g., "x ≤ y") or much more complex domain specific 

constraints. Afterwards, solving a concrete problem is 

delegated to some specialized CP solver. A solver  

therefore offers a set of predefined models and 

constraint types, which can be extended almost 

arbitrarily to fit any application-specific needs. 

Furthermore, the model might be modified during the 

execution of the solver[6].   

 

IV. PRESENT WORK 

We try to solve this problem by genetic algorithem with 

real coading. Recently, genetic algorithms (GAs) are 

successfully used for solution a range of the optimization 

Problems. Genetic algorithms are probabilistic population-

based search techniques. 

 

1) Basic features of genetic algorithms: 

 

1.1) Terminology 

Genetic algorithms (GAs) are stochastic techniques whose 

search methods model a natural evolution. That is why the 

terminology used in GAs is taken from biology[4]. 

 

1.2) General description of genetic algorithms 

 

The genetic algorithms start with randomly chosen 

parent chromosomes from the search space to create a 

population. They work with chromosome genotype. The 

population ―evolves‖ towards the better chromosomes by 

applying genetic operators modeling the genetic processes 

occurring in the nature—selection, crossover and mutation. 

Selection compares the chromosomes in the population aim 

in to choose these, which will take part in the crossover 

process. The selection occurs with a given probability on the 

base of fitness functions. The fitness function plays a role of 

the environment to distinguish between good and bad 

solutions. The crossover is carried out after selection 

process is finished. It combines, with predefined probability, 

the features of two selected parent chromosomes forming 

similar children. After crossover offspring undergoes to 

mutation. Generally, the mutation refers to the creation of a 

new chromosome from one and only one individual with 

predefined probability [5]. 

After three operators are carried the offspring is inserted 

into the population, replacing the parent chromosomes in 

which they were derived from, producing a new generation. 

This cycle is performed until the optimization criterion is 

met. This can explain by fig 1. 

 

1.2.1) selection: 

  

At the first generation, initializes a population of randomly 

created individuals. Check initial population for all 

constraint. Afterwards they are used to calculate the values 

of the objective function and to determine respective fitness 

functions. At the next steps the evolutionary operators take 

place to create the offspring. Firstly, a biased selection for 

reproduction is carried out. The algorithm operates with the 

fitness function values to provide the most prospective 

samplings for a crossover.  

 

 

 

 

 

 

 

 

 



Large Scale Energy Management Problem| ISSN: 2321-9939 

IJEDR1302028 
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH |  IJEDR 

 Website: www.ijedr.org  |  Email ID: editor@ijedr.org 
132 

 

       
                                  Fig 1. Steps for genetic algo. 
 

  

1.2.3)  Crossover 

 

Crossover probability (Pc) is .6 to .9.crossover can be 

done 1 point or multipoint crossover. In this problem we are 

using 1 point crossover. In one Point Crossover select 1 

crossover point randomly. Crossover will be done in bits 

from 1 parent and to the left of the crossover point are 

combined with bits from the other parent and to the right of 

the crossover point. 

 

Real crossover is almost the same is in binary: 

 

 Take the list of real numbers from one parent, 

combine them with a list from the other parent 

 {5,6,7,8},{1,2,3,4} combine at crossover point 

between 2 and 3 to create children {5,6,3,4} and 

{1,2,7,8} 

 

 
                                        Fig 2.  Real crossover[5] 
 

 

1.2.4) Mutation 

Mutation probability is very small than the crossover, it 

is .01 to .05.Mutation is the occasional introduction of new 

features in to the solution strings of the population pool to 

maintain diversity in the population. 

Though crossover has the main responsibility to search 

for the optimal solution, mutation is also used for this 

purpose. First choose mutation point randomly.in mutation 

number inter change their places. For eg. 6 and 7 

interchange there places in first individual and 3 and 4 

interchange there places in second individual. So after 

mutation individuals are : {5,7,6,8}{1,2,4,3}. 

 

1.2.5) Fitness 

A fitness function value quantifies the optimality of a 

solution. The value is used to rank a particular solution 

against all the other solutions. A fitness value is assigned to 

each solution depending on how close it is actually to the 

optimal solution of the problem. Fitness value is choose by 

calculating objective function. 

 

CONCLUSION 

 

In this paper we have reviewed several issues relating to 

one of the most important alternatives to solve problem of  

optimizing by the real coding. We have presented and 

compared the genetic operators described in the literature 

for GAs based on this problem. Tools that allow the 

behavior of these algorithms to be studied have also been 

explained. The most important feature of the real coding in 

genetic algorithm (RCGAs) is their capacity to exploit  local 

Continuities. We discuss about the step of solving 

optimization problem by genetic algorithm. We found that 

GA is very good technique to solve scheduling and 

optimizing problem.   
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