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Abstract - The objective of this paper was to predict the failure load of carbon/epoxy composite test specimens using an 

online acoustic emission (AE) monitoring and artificial neural networks (ANN). The test specimens were Carbon/epoxy 

rings made of carbon T700 fibers and Epoxy resins these rings were tested in BISS 300KN Servo-hydraulic (UTM) 

Universal Testing Machine with the help of split disk test fixtures to ensure uniform distribution of loads on the ring and 

fixing AE sensors on the specimen at discrete locations.  A series of 24 carbon/epoxy rings were monitored with an 

acoustic emission (AE) system, while loading them up to failure. AE signals emitted due to different failure modes in 

tensile specimens were recorded. Amplitude, duration, energy, counts, etc., were the effective parameters to classify the 

different failure modes in composites, viz., matrix crazing, fiber cut, and delamination, with several subcategories such as 

matrix splitting, fiber/matrix debonding, fiber pullout, etc.  A  Multi-layer Back propagation neural network was 

generated to predict the failure load of tensile specimens. The network was trained with the amplitude distribution data of 

AE collected up to 50%, 60%, and 70% of failure loads, respectively along with their slope of cumulative amplitude 

distribution plot. 10 specimens were in the training set with their corresponding failure loads. The trained network was 

able to predict failure loads of remaining 14 specimens within the acceptable error tolerance. The results were compared, 

and we found that the network trained with 60% data having better prediction performance. 

 

Index Terms - Carbon/epoxy rings, Acoustic emission (AE), Strength, Artificial neural networks, Tensile testing. 

I. INTRODUCTION 

The carbon epoxy composite materials have been widely used in aerospace industry as structural materials due to their 

advantages, like high strength-to-weight ratio, good corrosion resistance characteristics and fast on-site installation. These weight 

savings in turn contribute to greater payload capability. With the increased use of composites, continuing research in assessment 

and quality control of composites must be an ongoing process. The major types of damage mechanism of composites are matrix 

crazing, fiber breakage, and delamination. As far as the structural integrity is concerned, there is a question of whether or not the 

proof loading lowers the actual failure load of composite hardware. For metals, assuming the absence of macroscopic flaws, as 

long as the stress is kept below the proportional limit or yield point, there is little in the way of plastic deformation and, therefore, 

no noticeable degradation in the structural integrity. This, however, does not hold true for fiber/matrix composites because fibers 

are the primary load-bearing constituents in composites; the structural integrity begins to degrade as soon as the fibers begin to 

break. The only way to avoid such an unintentional structural degradation is to reduce the proof test load. One such application is 

carbon epoxy filament wound rocket motor casings of solid propulsion systems for aerospace and missile structures where the 

weight saving contributes to greater payload and range capabilities. Non-destructive testing has helped to improve the quality 

thereby structural integrity and the performance of composite structures. 

Acoustic Emission technique is a fast-developing non-destructive testing tool ideally suited for the integrity evaluation of 

composite hardware during proof load testing. AE is defined as “the class of phenomena where by transient elastic waves are 

generated by the rapid release of energy from localized sources within a material, or the transient waves so generated”. AE 

signals, once generated, will be detected by the AE sensors, which are attached to the material, and sent to the AE data acquisition 

system for recording and processing. A typical AE signal, Fig. 1, is a complex, damped, sinusoidal voltage vs time plot. Some of 

the characteristics, such as amplitude, duration, energy, events, and counts, are the key parameters for material characterization 

and structural integrity evaluation. Very long back itself amplitude distribution has been utilized for analyzing the failure 

mechanism in composite materials. Predicting ultimate failure load of composite specimens using AE data was proved earlier by 

Walker and Hill. 
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Fig. 1 Typical AE signal and characteristics 

Artificial neural network (ANN) is an information processing system that has certain characteristics similar to biological neural 

networks. A neural network consists of a large number of simple processing elements called neurons or nodes. Each of these 

neurons is connected to other neurons by communication links, each with associated weightage. The weightage represent 

information that is used by the network to solve a problem. A hidden layer neuron has many input paths and combines values of 

the input paths by a simple summation. The summed input is then modified by a transfer function and passed directly to the 

output path of the processing element, as shown in Fig. 2. The output path of the processing element can then be connected to 

input paths of other nodes through connection weightings. Since each connection has a corresponding weighting, these weightings 

prior to being summed modify the signals on the input lines to a process element. The processing elements are usually organized 

into groups called layers. Typically, a network consists of an input layer, where data are presented to the network; one or more 

hidden layers for processing; and one output layer to get the results from the network. It has been demonstrated that AE data 

could be used along with neural network for predicting ultimate strength of graphite epoxy tensile specimens and weld strength of 

aluminium–lithium specimens by researchers Walker and Hill, respectively.  

 

 
Fig. 2 Artificial neuron model 

II. EXPERIMENTAL SETUP AND PROCEDURE 

AE data sets were generated by loading 24 carbon/epoxy unidirectional tensile specimens at a rate of 1mm/min to failure.  

BiSS 300 KN capacity UTM was used to do the tensile test. While loading, AE activity was monitored with a Physical Acoustic 

Corporation (PAC) DiSP AE system. A pair of R15 sensors (150 KHz, resonant) and preamplifiers with 20 dB gain were used. 

AE transducers were mounted in position using adhesive tapes. In order to acquire emissions from complete volume, the sensors 

were mounted on alternate sides of the specimen, as shown in Fig. 4. 

 

 
Fig. 3 Actual Specimens manufactured and tested 
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Fig. 4 Specimen with sensors 

 
Fig. 5 Specimen mounted on UTM 

 

AE signal transmission between specimen and sensor was ensured through appropriate couplant (silicone vacuum 

grease). A threshold setting of 35 dB was adopted for the test after estimating background noise. Hsu-Nielson 0.5 mm diameter, 

2H pencil break was conducted before each test for ensuring proper working of AE channels. Only AE amplitude frequency data 

collected up to 50%, 60% and 70% of failure load along with the slope of cumulative amplitude distribution plot of 10 specimens 

were supplied as input to the Backpropagation ANN models. Input data of 14 remaining specimens were used as the test phase for 

the ultimate strength prediction in MATLAB Workspace. Failure load prediction was obtained using MATLAB neural network 

toolbox. Walker has taken only the matrix crazing signals (23 to 45 dB) for his weibull analysis and neural network prediction at 

25% level. This research has contemplated that accurate prediction could be possible with high-amplitude hits recorded during 

loading because a significant number of fiber breakage and matrix splitting events, which produce high-amplitude signals, are 

adversely affecting the failure load of the specimen. 

 

   
Fig. 6 Failure of specimen 

III. FAILURE MECHANISMS ANALYSIS 

As mentioned previously, the three primary failure modes for most composites are matrix crazing, fiber breakage, and 

delamination. Unlike in pressure vessels and flexural tests, considerable delamination was not expected in unidirectional tensile 

test, but matrix splitting can occur. Each of these failure modes has specific magnitudes for various AE characteristics, which 

makes AE useful in identifying these failure mechanisms. A typical matrix crazing signal is of long duration with low amplitude 
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and low energy. Matrix crazing occurs throughout the testing cycle and is usually the least damaging of the mechanisms. Matrix 

splitting occurs when matrix cracking occurs along the fibers. This mechanism can bring down the failure load as much as the 

fiber failure. Duration of this failure is long; energy and amplitude are also lesser than fiber breakage. Another failure mode, fiber 

breakage, is typically the most damaging mechanism since the fibers are the main load-bearing constituents of the structure. Fiber 

breaks have the highest amplitudes and energy in the three primary failure mechanisms. These are all consolidated in Table 1. 

Table 1 Characteristics of failure modes 

AE Parameters Failure Modes 

 Matrix Crazing 
Matrix 

Splitting 

Fiber 

Breakage 

Amplitude 

Duration 

Energy 

Low 

Long 

Less 

Medium 

Long 

More 

High 

Short 

More 

 

Although all the characteristics are useful in providing information on AE, the research herein used only amplitude (in the 

form of frequency in each dB from 35 to 100) and the slope of cumulative amplitude distribution plot for failure load prediction. 

Here, event frequencies at 5-dB intervals are provided as input for the neural network. Statistical methods are also capable of 

predicting the failure strength of specimens; however, neural network prediction accuracy was found to be better. 

A series of plots were generated between different AE parameters to illustrate, evaluate and assess the possible correlation 

between these parameters and failure load. The AE data acquired during the tests has been post processed with Matlab software 

and AE correlation plots were generated to identify the failure mechanisms. The load is normalized for ease of comparison of the 

data for different specimens.  
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Fig. 7 Acoustic Emission correlation plots 
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Researchers have reported that the slope of the cumulative amplitude distribution curve indicates the dominant failure 

mechanism and the presence of two dominant failure modes give rise to bilinear nature to the cumulative amplitude distribution 

plot. The curves of all the specimens exhibit a linear trend up to around 70% of the breaking load beyond which bi-linearity (2 

distinct slopes) is noticed. The number of slopes in the plot indicates number of failure modes that the sample experienced. Hence 

it can be concluded that, matrix cracking has been dominant until 70% of the load and beyond this fiber breakage initiates. 

IV. RESULTS AND DISCUSSIONS 

AE data were collected during loading until failure of each specimen. AE hits recorded while testing of each specimen at 

different loading levels. Data acquired till failure are used for post-test analysis. After analysis, three parameters chosen for 

further studies are amplitude, duration, and energy. Multiple linear regression analysis performed by Fatzinger and Hill using 

percentage of hits associated with each failure mechanisms has provided a failure load (I beams) prediction error of 36%, but an 

optimized ANN with amplitude frequency provided only 9.5% error. From this research work, it was concluded that amplitude 

frequency along with ANN proved to be better than all other AE parameters. Hence, here, the same approach was also adopted.  

Twenty four tensile specimens were grouped into two sets called training and testing sets. The training set contains 10 

specimens inclusive of best and worst failure loads recorded; the fourteen remaining specimens were in the test set. AE hits 

recording up to 50%, 60% and 70% of load were taken for failure load prediction. Amplitude frequencies at 5 dB interval (35 to 

99 dB) along with the slope of cumulative amplitude distribution plot are given as the input vector. The sorted Input training data 

for ANN up to 50%, 60% and 70% of load are listed in below tables.  

Table 2 Input training data for ANN up to 50% of load 

Spec. 

no. 

35-39 40-44 45-

49 

50-

54 

55-

59 

60-

64 

65-

69 

70-

74 

75-

79 

80-

84 

85-

89 

90-

94 

95-

99 

Slope  

2 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

12677 

11888 

11895 

19220 

19662 

16691 

21975 

18754 

14398 

20594 

20877 

15770 

14762 

22312 

16876 

19091 

16807 

21252 

16007 

9108 

20048 

21877 

16211 

18878 

6355 

6876 

5861 

11382 

12385 

9565 

15036 

10857 

6741 

14994 

15510 

9177 

8032 

14064 

10416 

13606 

10373 

13205 

9047 

5099 

12199 

13730 

11098 

12891 

2401 

3374 

2370 

5362 

5653 

4008 

7593 

4380 

2579 

7988 

8758 

3464 

3116 

6549 

4415 

7547 

5245 

6450 

4144 

2128 

5922 

6680 

7417 

7170 

976 

1393 

993 

2349 

1906 

1648 

3005 

1672 

996 

3118 

3792 

1316 

1143 

2499 

1498 

3004 

2002 

2723 

1710 

889 

2515 

2823 

6816 

3152 

396 

613 

408 

1067 

731 

672 

1118 

759 

418 

1069 

1585 

544 

417 

1058 

661 

1145 

692 

1131 

727 

352 

1066 

1270 

1389 

1108 

147 

236 

179 

480 

331 

252 

459 

311 

136 

393 

603 

211 

143 

434 

272 

485 

327 

475 

265 

165 

430 

586 

326 

468 

42 

105 

54 

127 

115 

80 

185 

100 

42 

160 

211 

62 

38 

176 

90 

217 

111 

155 

90 

47 

154 

232 

105 

172 

11 

29 

22 

31 

15 

20 

53 

25 

14 

45 

76 

15 

6 

45 

24 

82 

30 

55 

24 

18 

37 

76 

35 

50 

4 

12 

9 

12 

7 

16 

13 

6 

4 

13 

17 

8 

4 

18 

6 

24 

6 

13 

6 

8 

19 

22 

10 

12 

1 

2 

3 

4 

5 

1 

3 

6 

3 

5 

11 

1 

3 

5 

3 

10 

3 

5 

3 

2 

1 

10 

2 

5 

1 

2 

1 

7 

1 

2 

6 

2 

1 

0 

3 

1 

0 

3 

1 

5 

1 

3 

1 

0 

0 

3 

0 

1 

1 

1 

0 

7 

0 

0 

1 

0 

0 

0 

2 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.08665 

0.08214 

0.08489 

0.07379 

0.09195 

0.08750 

0.08627 

0.08598 

0.08630 

0.09433 

0.08366 

0.09266 

0.09394 

0.08648 

0.09237 

0.08310 

0.09349 

0.08852 

0.08998 

0.08826 

0.09507 

0.07798 

0.10093 

0.09303 

Table 3 Input training data for ANN up to 60% of load 

Spec. 

no. 

35-39 40-44 45-49 50-

54 

55-

59 

60-

64 

65-

69 

70-

74 

75-

79 

80-

84 

85-

89 

90-

94 

95-

99 

Slope  

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

14495 

14426 

13268 

22173 

22728 

19081 

25533 

21265 

15878 

22599 

23818 

7436 

8361 

6567 

13478 

14269 

10884 

17585 

12441 

7633 

16513 

17505 

2891 

4143 

2733 

6460 

6606 

4659 

9115 

5161 

3007 

8977 

9964 

1201 

1759 

1175 

2976 

2360 

1929 

3707 

2017 

1160 

3562 

4429 

483 

771 

486 

1369 

908 

785 

1460 

931 

503 

1254 

1904 

186 

301 

206 

619 

404 

299 

603 

394 

180 

468 

742 

55 

134 

62 

194 

149 

93 

244 

132 

54 

192 

273 

17 

38 

24 

58 

21 

22 

69 

45 

18 

49 

96 

6 

15 

9 

17 

14 

17 

19 

10 

8 

20 

21 

2 

2 

3 

6 

8 

1 

5 

9 

6 

8 

12 

1 

4 

2 

9 

1 

2 

7 

3 

1 

0 

3 

2 

1 

0 

8 

0 

0 

1 

1 

1 

0 

2 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.08127 

0.08058 

0.08379 

0.07342 

0.09115 

0.08905 

0.08587 

0.08227 

0.08287 

0.08901 

0.08476 
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13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

18557 

16213 

24348 

18786 

21347 

19058 

24143 

19446 

11176 

23515 

25279 

17927 

20900 

10775 

8911 

15277 

11601 

15265 

11834 

15235 

11427 

6387 

14343 

15926 

12176 

14184 

4200 

3499 

7197 

5000 

8438 

5952 

7631 

5339 

2870 

6982 

7821 

7921 

7903 

1674 

1347 

2762 

1780 

3390 

2323 

3275 

2295 

1241 

3056 

3306 

7044 

3493 

678 

504 

1189 

758 

1336 

820 

1370 

975 

516 

1343 

1455 

1507 

1252 

277 

186 

477 

319 

589 

370 

597 

368 

234 

551 

681 

364 

528 

84 

50 

193 

105 

262 

128 

205 

132 

77 

188 

261 

125 

191 

22 

16 

55 

32 

99 

36 

68 

40 

27 

46 

83 

42 

57 

9 

7 

24 

6 

26 

9 

18 

11 

16 

23 

23 

13 

15 

2 

3 

6 

3 

12 

3 

7 

3 

5 

1 

13 

2 

6 

1 

1 

4 

1 

5 

1 

4 

1 

1 

1 

3 

0 

2 

0 

0 

1 

0 

0 

0 

1 

0 

0 

1 

5 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.09296 

0.09000 

0.08606 

0.09340 

0.08358 

0.09413 

0.08600 

0.09182 

0.08324 

0.09085 

0.09446 

0.09941 

0.09127 

Table 4 Input training data for ANN up to 70% of load 

Spec. 

no. 

35-39 40-44 45-49 50-

54 

55-

59 

60-

64 

65-

69 

70-

74 

75-

79 

80-

84 

85-

89 

90-

94 

95-

99 

Slope  

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

16168 

16806 

14413 

25086 

26715 

22353 

29024 

23629 

18002 

24517 

27298 

20882 

17323 

26252 

20566 

24069 

21819 

27333 

22892 

13009 

25826 

28575 

20305 

22825 

8490 

9941 

8267 

15549 

17088 

13043 

20014 

13955 

8938 

17836 

19926 

12074 

9545 

16491 

12715 

17082 

13826 

17482 

13745 

7569 

15810 

18103 

13440 

15492 

3423 

4922 

3748 

7572 

8219 

5794 

10645 

5976 

3735 

9775 

11409 

4806 

3783 

7861 

5570 

9478 

7020 

8946 

6556 

3469 

7709 

9007 

8581 

8604 

1422 

2111 

1691 

3621 

3177 

2545 

4542 

2394 

1469 

3893 

5171 

1946 

1477 

3009 

2056 

3930 

2791 

3908 

2919 

1513 

3400 

3898 

7346 

3806 

583 

932 

767 

1719 

1276 

1050 

1870 

1085 

650 

1411 

2254 

762 

584 

1290 

857 

1622 

1012 

1699 

1289 

649 

1516 

1724 

1634 

1404 

222 

380 

319 

821 

555 

380 

786 

454 

236 

531 

903 

315 

204 

527 

377 

728 

448 

729 

518 

286 

607 

787 

411 

583 

66 

157 

126 

259 

216 

129 

315 

164 

77 

215 

337 

98 

57 

215 

124 

310 

160 

251 

182 

104 

211 

316 

145 

211 

26 

48 

44 

90 

45 

35 

94 

64 

25 

57 

125 

29 

21 

63 

48 

117 

43 

84 

59 

34 

57 

93 

50 

66 

8 

20 

20 

27 

25 

20 

30 

14 

13 

23 

34 

10 

10 

28 

8 

29 

12 

24 

16 

20 

28 

28 

15 

17 

3 

6 

15 

10 

11 

3 

8 

10 

9 

12 

16 

4 

4 

7 

5 

15 

6 

9 

5 

8 

3 

15 

3 

9 

2 

5 

5 

10 

4 

7 

10 

5 

2 

2 

5 

1 

1 

5 

1 

5 

2 

4 

1 

4 

1 

4 

1 

2 

2 

1 

2 

10 

1 

1 

1 

1 

1 

0 

2 

0 

0 

2 

1 

1 

0 

1 

2 

1 

1 

5 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0.08028 

0.07985 

0.07384 

0.07263 

0.08393 

0.08281 

0.08360 

0.08175 

0.08056 

0.08737 

0.08354 

0.09173 

0.08978 

0.08207 

0.08795 

0.08388 

0.09057 

0.08669 

0.08596 

0.07917 

0.09009 

0.07977 

0.09734 

0.08847 

 

 
Fig. 8 Neural network for failure load prediction 

A network was constructed with 14 input neurons and only one output (failure load) neuron. The network was trained 

with different combinations of middle-layer neurons to get the targeted output. Two hidden layers with nodes 12 and 2 were used. 

Lots of trial and error methods were adopted to arrive at network parameters such as number of nodes in hidden layer, changes in 

learning rate etc. The better error convergence was obtained at the network architecture 14-12-2-1. TRAINLM (Levenberg-

Marguart algorithm) and TANSIG were used as the training function and transfer function and 0.01 and 0.9 are the learning 

coefficient and momentum, respectively. Then, the network was given only the inputs of testing set specimens and their failure 

loads were predicted by the network. Output results of the network are given in Table 5. 
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Table 5 Failure load predicted by neural network 

Specimen 

number 

Actual 

Failure 

Load (KN) 

Predicted 

Failure 

Load at 

50% 

% 

Error 

 

Predicted 

Failure 

Load at 

60% 

% 

Error 

Predicted 

Failure 

Load at 

70% 

% 

Error 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

53.52113 

63.17223 

70.64911 

60.60697 

70.89085 

55.73695 

61.45385 

65.00436 

71.21047 

57.13214 

64.86225 

56.2265 

59.14672 

67.86856 

65.08395 

61.68812 

65.52305 

58.39666 

62.5226 

67.55335 

65.97717 

61.11546 

62.87532 

62.73173 

59.34089 

66.48543 

67.04457 

61.42602 

67.47309 

57.09275 

57.91388 

65.84595 

63.56004 

61.28516 

58.88264 

60.92924 

65.27514 

63.43045 

66.01878 

62.00516 

66.25188 

60.10650 

66.98498 

67.59579 

59.18384 

58.70644 

66.25727 

62.91969 

-10.87 

-5.24 

5.10 

-1.35 

4.82 

-2.43 

5.76 

-1.29 

10.74 

-7.26 

9.21 

-8.36 

-10.36 

6.53 

-1.43 

-0.51 

-1.11 

-2.92 

-7.13 

-0.06 

10.29 

3.94 

-5.37 

-0.29 

57.91185 

64.80163 

64.81387 

60.63214 

64.54994 

56.02518 

60.64532 

66.15129 

63.85792 

61.22613 

61.25320 

59.61136 

60.18119 

60.73196 

62.56368 

61.62639 

62.89332 

60.76220 

61.94031 

66.22098 

59.17492 

61.45301 

61.20161 

61.44307 

-8.20 

-2.57 

8.25 

0.04 

8.94 

0.51 

1.31 

-1.76 

10.32 

-7.16 

5.56 

-6.02 

-1.74 

10.51 

3.87 

0.1 

4.01 

-4.05 

0.93 

1.97 

10.30 

-0.55 

2.66 

2.05 

56.56209 

62.27266 

70.24814 

65.57476 

64.45373 

54.06207 

62.19231 

62.63021 

63.70435 

62.65157 

62.15584 

61.32826 

59.84777 

63.44271 

61.76968 

62.14812 

61.98645 

62.15031 

61.82509 

63.17561 

62.00115 

62.32882 

60.26458 

62.11194 

-5.68 

1.42 

0.56 

-8.19 

9.08 

3.00 

-1.20 

3.65 

10.54 

-9.66 

4.17 

-9.07 

-1.18 

6.52 

5.09 

-0.74 

5.39 

-6.42 

1.11 

6.48 

6.02 

-1.98 

4.15 

0.98 

 

The network trained with 50% of AE data has obtained Error convergence at 8th epoch and the Best validation 

performance is 8.9592 at epoch 1 and the maximum prediction error is 10.87%. The network trained with 60% of AE data has 

obtained Error convergence at 13th epoch and the Best validation performance is 20.1039 at epoch 7 and the maximum prediction 

error is 10.51%. The network trained with 70% of AE data has obtained Error convergence at 7th epoch and the Best validation 

performance is 15.1578 at epoch 1and the maximum prediction error is 10.54%. Error convergence plots are shown in Fig. 9. 

 

 

      
Fig. 9 Error convergence plot at 50%, 60% and 70% of AE data 
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Fig. 10 Results plot with actual failure loads 
 

 
 

 
Prediction results of three networks were compared with the actual failure loads, and they were plotted in Figure 10. This 

comparison spelled out that the increase in accuracy of the neural network depends on the increase of data quantity. However, an 

increase in the load of composite hardware above a particular limit will adversely affect the structural integrity, as discussed in the 

introduction of this manuscript.  

Therefore, the failure load prediction was restricted with a maximum of 70% loading level. The maximum prediction error at 

50% loading level was 10.87% and 10.54% at 70% loading level where the damage accumulation gets started. Hence, the 

maximum error tolerance of 10.51% obtained at 60% loading level was found sufficiently nearer to the actual failure load of the 

specimen. 

V. CONCLUSION 

This work predicted the ultimate strength of carbon/epoxy composites using online acoustic emission (AE) monitoring and 

artificial neural networks (ANN) under uniaxial tension. Failure load prediction was carried out for 24 specimens by means of 

ANN using amplitude distribution data obtained up to 50%, 60% and 70% of the actual failure load. Amplitude frequency at 5 dB 

interval (35 to 99 dB) along with the slope of cumulative amplitude distribution plot was given as the input vector and their 

known ultimate strength as the output data. Two hidden layers with nodes 12 and 2 are used. The better error convergence was 

obtained at the network architecture 14-12-2-1. This technique permitted the ultimate tensile strength with an acceptable error 

tolerance of 10.5 percent. AE combined with neural network (NN) is an effective method to predict failure load. 

This project demonstrates the capability of a backpropagation neural network to predict the ultimate strength of carbon/ epoxy 

tensile specimens. An increase in performance of the network with a higher quantity of AE data was proved very clearly by the 

comparison done between the results of three networks developed. In order to avoid the structural integrity degradation during 

proof testing, the failure loads of tensile coupons were predicted with 60% and the lower level itself. At 70% of failure load the 

damage accumulation get started. So that it may be possible to proof test the composite hardware, more sophisticated methods 

than those that are currently being tested need to be developed (70% to 80% of failure load), and their failure loads could be 

predicted. 
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