
© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1091

Error Free Iterative Mitchell Algorithm Based

Multiplier for Image Filters
1
Jeevana B,

2
S Sridevi

1
M.Tech,

2
Asst. Professor

1
Electronics and Communication
1
CMRIT, Bangalore, Karnataka

__

Abstract - In digital image processing applications the quality of image depend on the Multipliers. Existing multipliers

introduce errors in the output which will require more time, hence error free high speed multipliers has to be designed to

overcome this problem. This paper presents a FPGA based iterative Mitchell Algorithm based multiplier for image filters

by introducing error correction term in Karastuba-Ofman multiplier (KOM) architectures for image filters. The

proposed multiplier is synthesized using Spartan 6 FPGA Family Device XC6SLX45-CSG324. Iterative Mitchell

algorithm based multiplier improves the performance parameters such as area utilization, error, speed are better in the

case of proposed architecture compared to existing architectures.

Index Terms - FPGA, Mitchell log multiplier, Karastuba-Ofman multiplier, PSNR.

__

I. INTRODUCTION

In many real-time DSP applications, speed is the main target and achieving this may be done at the expense of the accuracy of the

arithmetic operations. Signal processing deals with signals distorted with the noise caused by amplifiers, quantization processes,

non-ideal sensors, etc., as well as algorithms based on certain assumptions, results in inaccurate results. In many signal processing

algorithms, which include correlation computations, here the exact value of the correlation is not much of important; only the

maximum of the correlation is required. Multipliers will introduce small errors in the result which will not affect the result

significantly and they are still acceptable in practice. Several researchers have found the use of Logarithmic Number System in

divider /multiplier design. The two methods proposed in the literature are look up table (LUT), Mitchell Algorithm (MA).

Interpolation based methods efficiently implement logarithmic operations but requires more hardware when compared to MA

predicated calculation.

MA does not require a Look up table and shifting and counting operations are used for multiplication. Multipliers based on MA,

the accuracy of the final result depends upon the procedure used to determine the log and antilog values. This is due to the simple

piecewise approximation of the logarithm and antilogarithm curve. Many researches has been going on MA based multipliers,

none of these researches had been succeeded to make zero error in MA. A novel approach has been introduced to reduce error rate

of MA based multiplier, in fact zero error condition is also achieved with proposed algorithm.

II. RELATED WORK

[1]In this paper to improve the accuracy of the Logarithmic multiplier Mitchell‟s based algorithms is used. Here the mantissa is

divided into eight intervals and an average correction value is added in each intervals. To test multiplier Finite Impulse Response

(FIR) Filter is used as part of a real application. This method offers an area saving of approximately 50% and for larger input

widths power saving is of 71%. This multiplier can additionally run at high speeds by pipelining the 3 main stages (error

correction, logarithm calculation summation, antilogarithm calculation). [2] Proposed methods avoid logarithm approximation

and introduce an iterative algorithm with various possibilities for minimizing the error and getting an exact result. Iterative

method implemented four 16-bits multipliers, a multiplier with no correction terms, and three multipliers with two, three and four

correction terms, respectively. The calculation of correction terms can be performed parallel in hardware. This iterative method

reduces the error percentage of the MA by 44.7% by on the average. [3] Proposed an algorithm to efficiently compute radix-10

logarithm of a decimal number. In this algorithm 64-bit floating-point arithmetic is used, and is based on a digit-by-digit iterative

computation. It does not require any correction or rounding circuitry hence it is suitable for critical applications which require

timing and accuracy. The final logarithmic output is very accurate with a maximum absolute error of 3.53x . The architecture

is generalized and scalable. It can be extended for decimal 128 formats.

[4] Proposed multiplier introduces an iterative algorithm to produce the exact result. This multiplier avoids logarithm

approximation. From the input image 3x3 matrix is considered and 3x3 Gaussian Kernel Window is convolved with 3x3 Matrix

using an appropriate equation. For entire image the convolution process is continued by shifting one column every time. In order

to simulate real image data in VHDL, MATLAB is used Iterative method improves the error percentage compared to the basic

Mitchell algorithm multiplication. The error of any multiplication result is less than a 0.5% by using only three correction terms

PSNR value will be displayed of original image and the output image. The comparison result shows that proposed method PSNR

is better than basic Mitchell algorithm multiplication.[5] Proposed an parallel Karatsuba Multiplier over GF (2m) it is an efficient

multiplication algorithm and it will reduces the two n-digit numbers multiplications to at most single digit multiplications. The

straight forward multiplication is used for the modular multiplier to get a speed efficient design. In order to get an area efficient

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1092

design Karatsuba algorithm is used. By combining classical and Karatsuba algorithm it is possible to obtain highly efficient

multipliers. By applying Karatsuba algorithm squaring can be easily performed. The experimental results on FPGA‟s and other

parameters such as delay, memory usage are compared between bit parallel Karatsuba Multiplier and Classical Multiplier. The

comparison result says that Karatsuba multiplier is better than the other multipliers. The bit parallel Karatsuba multiplier

consumes less resource among the known FPGA implementation

Many researches has been going on MA based multipliers, none of these researches had been succeeded to make zero error in

MA. A novel approach has been introduced to reduce error rate of MA multiplier, in fact zero error condition is also achieved

with proposed algorithm.MA does not require a Look up table; shifting and counting operations are used for multiplication.

Multipliers based on MA, procedure used to find the log and the antilog values impact the accuracy of the final result. This is due

to the simple piecewise approximation of the logarithm and antilogarithm curve.

III. ERROR FREE 4X4 MITCHELL LOG MULTIPLIER

The Proposed model is the combination of KOM and EFMLM. By using radix2 concept 16x16 multiplier to be implemented is

decomposed into smaller order multiplier. Each 16x16 multiplier is decomposed into four 8x8 multipliers and each 8x8 multiplier

is decomposed into sixteen 4x4 multipliers. In all 4x4 multiplication the EFMLM is used which results in zero error. In 4x4, 8x8

and 16x16 multiplications KOM is used along with 4x4 EFMLM to obtain zero errors.

Fig.1 Proposed 16x16 Multiplier

Fig.2 Error correction circuit

In the proposed error correction circuit 1
st
 stage XOR gate output is sent as input to the second stage. 2

nd
 stage XOR

gate output and is send as input to third stage. 3
rd

 stage XOR gate output and is send as input to fourth stage.

Finally the output of all the four stage is added (, , ,) to obtain error free result.

Algorithm (Iterative MA-based algorithm)[2]

.

IV. KOM in Proposed Model

KOM is an high speed, parallel multiplier architecture. The KOM product is given in Eq.1 .

 (1)

EFMLM’s

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

4x4 KOM

8x8

KOM

8x8

KOM

8x8

KOM

8x8

KOM

16x16

KOM

 KOM’s

Adder

Mitchell

 Block

Mitchell

 Block

Mitchell

 Block

Mitchell

 Block

N1

N2

pp1
pp2

pp3

pp4

ni1

𝑛𝑖11

𝑛𝑖12

𝑛𝑖21 𝑛𝑖22

ni2

P(appro)

1. N1, N2: n-bits binary multiplicands.

2. Calculate k1: leading one position of N1

3. Calculate k2: leading one position of N2

4. Calculate (N1-2
k1

)2
k2

: shift (N1-2
k1

) to the left by k2 bits

5. Calculate (N2-2
k2

)2
k1

: shift (N2-2
k2

) to the left by k1 bits

6. Calculate k12 = k1 + k2

7. Calculate 2
k1+k2

: decode k12

8. Calculate P
(0)

approx: add 2
k1+k2

, (N1-2
k1

)2
k2

 and (N2-2
k2

)2
k1

PKOM=aLbL+ (aLbH + aHbL) z
n/2

 + (aHbH) z
n
.

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1093

The KOM architecture used in implemented model is shown in fig 3. For multiplications the operands say a and b of size n bits

are taken and an each n bit operand is decomposed into two n/2 bits operands. Operand a is decomposed into as and .

Operand b is decomposed into and .

Fig.3 KOM in Proposed Model [6]

The KOM performance is enhanced using pipelined architecture concept as shown in Fig.4. The architecture is organized into

five stages viz., (1) Operand Decomposition stage (2) Adder 1st stage (3) Adder 2nd stage (4) Adder 3rd stage and (5) Operand

Alignment stage and speed of multiplier is optimized with pipelining implementation. In pipelined KOM speed is double

compared to non pipelined KOM.

Throughput Analysis of Pipelined KOM

To analyze throughput in pipelined architecture, for each operation one clock period is considered .In 1
st
 clock period n bit

operands are decomposed into four n/2 bit operands and are sent to n/2 KOM stage. During 2
nd

 clock period, the first n/2 KOM

outputs product, which is Partial Product say mid1() are sent to nth KOM stage. At 3
rd

 period, second n/2 KOM outputs

product, which will be mid2() are sent to nth stage. At 4th clock period, third n/2 KOM outputs product which is low() ,

simultaneously mid1 and mid2 are added in adder 1 of nth stage KOM. During 5th clock period, fourth n/2 KOM outputs

high() , simultaneously low() is added with sum of mid1() and mid2() in adder 2 of nth KOM. At 6
th

 clock

period the product of fourth n/2 KOM high () is added with sums of low (), mid1 () and mid2 () in adder 3 of nth

KOM. During 7th clock period, the product is aligned. Generally seven periods are required to obtain product in the pipelined

KOM. The KOM without pipeline requires nine clock periods such as one for operand decomposition, four for partial products

generation, three for adders and one for product alignment. The number of clock periods required by pipelined KOM is less

compared to KOM without pipelined hence the throughput is enhanced.

Fig.4 Pipelined Implementation of KOM [6]

n bit Full Adder

n bit Full Adder

PRODUCT (2n)

Zero Extension

n/2 bit Barrel Shifter

n/2 KOM (aH bHZn) n/2 KOM (aH bLZn/2) n/2 KOM (aLbH Zn/2) n/2 KOM (aLbL)

n bit Full Adder

n bit a(z) n bit b(z)

n/2 n/2 n/2 n/2

n

n n

n

n

n

n/2

n/2

n

n

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1094

Fig.5 Pipelined organization for throughput analysis in KOM [6]

IV. APPLICATION OF PROPOSED MODEL TO NOISY IMAGE SMOOTHENING THROUGH GAUSSIAN FILTER

The Biometric is one of the important fields and it is used to identify person effectively since biometric traits cannot be shared.

The several biometric traits such as Palm Print, Iris recognition, Finger Print, Signature, Voice recognition, Face recognition etc.

are used to authenticate a person and the biometric samples may be corrupted with noise with high frequency components. Hence

to eliminate high frequency components using filters pre processing is required. The noisy image is considered and Gaussian filter

along with proposed multiplier is used to eliminate high frequency components. In Gaussian filters to eliminate high frequency

components the noisy image is convolved with Gaussian kernel values and is sampled and truncated to obtain 3x3 Gaussian

kernels as shown in Fig.6 for scaling 256.The 2-D, zero mean Gaussian function is given in Eq.2 .

 (2)

 =Standard deviation of the distribution

Fig.6 Gaussian 3x3 Kernel windows for  =1.0 with scaling factors 256.[6]

The 3x3 matrix is considered from the noisy image. Noisy image is convolved with 3x3 Gaussian Kernel window using Eq.3.

 (3)

For entire image convolution process is continued by shifting one column every time

Where x = input noisy image,

 h = filter mask,

 y =output image;

 Height and width are respective height and width of image

Hardware Implementation for Image filtering
Using Gaussian kernel the noisy image is filtered by adopting convolution. The architecture given below consists of two FIFO

buffers in that FIFO buffer1 will read the first row of noisy image at every rising edge of clock. Each pixel value is send to FIFO

buffer it s send to register window to constitute 3x3noisy image matrix. Register window is convolved with the Gaussian Kernel

window of size 3x3 using proposed multiplier and Ripple Carry Adder. The register window of noisy image is shifted right by

one column and convolved with Gaussian Kernel and this process is continued till the end column of image to complete process

for first three rows of an image. The rows are shifted down by 1 to consider 2nd, 3rd and 4th rows for convolution process and are

continued till end row of the noisy image to complete convolution process with whole noisy image.

1

256
 48

21

31

31

21

31

21

31

21

2 2

2

()

2
2

1
(,)

2

x y

G x y e 



 



0 0

(,) (,) (,)
height width

i j

y m n h i j x m i n j
 

    

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1095

Fig.7 Hardware Implementation for Image filtering

Algorithm of the Proposed Multiplier

Inputs: a, b of size n is considered.

Output: P of size 2n bits

Step1: aL=a[0 to (n/2-1)];Decompose a into 2 n/2 size operands, lower n/2 bits are aL and

Step2: aH=a[(n/2) to (n-1)] ; higher n/2 bits are aH.

Step3: bL=b[0 to (n/2-1)];Decompose b into 2 n/2 size operands, lower n/2 bits are bL and

Step4: bH=b[(n/2) to (n-1)] ; higher n/2 bits are bH

Step5: low= KOM (aLbL); operands sent to n/2
th

 KOM stage to get low.

Step6: high=KOM (aHbH); Decomposed operands sent to n/2
th

 KOM stage to get high

Step7: mid1=KOM (aHbL); Decomposed operands sent to n/2
th

 KOM stage to get mid1

Step8: mid2=KOM (aLbH); Decomposed operands sent to n/2
th

 KOM stage to get mid2

Step 9: The n/2
th

 stage is decomposed into n/4,n/8….till 4x4, by repeating steps 1 to 8.

Step 10: Calculate k1: leading one position of N1

Step 11: Calculate k2: leading one position of N2

Step 12: Calculate (N1-2
k1

)2
k2

: shift (N1-2
k1

) to the left by k2 bits

Step 13: Calculate (N2-2
k2

)2
k1

: shift (N2-2
k2

) to the left by k1 bits

Step 14:Calculate k12 = k1 + k2

Step 15: Calculate 2
k1+k2

: decode k12

Step 16:Calculate (1
st
 stage of MLM): add 2

k1+k2
,(N1-2

k1
)2

k2
 and (N2-2

k2
)2

k1

Step 17: Calculate ,(2
nd

 stage of MLM). By repeating steps 10 to 16.1
st
 stage XOR gate output is sent as input to second

stage.

Step 18: Calculate (3
rd

 stage of MLM). By repeating steps 10 to 16.2
st
 stage XOR gate output is sent as input to third stage

Step 19: Calculate (4
th

 stage of MLM). By repeating steps 10 to 16.3
st
 stage XOR gate output is sent as input to fourth stage

Step 20:Calculate PEFMLM by adding output of all the four stages of MLM. PEFMLM = + + + .The four PEFMLM „s of

4x4stage constitute Partial products for 8x8 stage.

Step 21: mid= mid1+mid2; mid1 and mid2 partial products added to get mid.

Step 22: PKOM8x8=high+mid+low;Product of 8x8 stage is obtained.

Step 23: Products of 8x8 stage constitute Partial products of 16x16 stage.

Step 24: Steps 21 and 23 are repeated for higher stages of KOM, till n x n Multiplier stage.

V. RESULT

Proposed design is implemented using Hardware Description Language (VHDL). Multiplier designed is implemented on Spartan

6 family device, XC6SLX45-CSG324. The implemented multiplier is simulated using Modelsim 14.5.

Table 1 Area utilizations for 16 bit pipelined multipliers

Multiplier (16x16) Slices 4 input LUT‟S IOB‟S

BB [2] 216 404 99

BB+1ECC [2] 427 803 99

BB+2ECC [2] 635 1189 99

BB+3ECC [2] 824 1546 99

Proposed 512 1344 65

Out Pixel

𝑟4

*

𝐾2

*

𝐾1

*

𝐾3

*

𝐾4

*

𝐾5

*

𝐾6

*

𝐾7

*

𝐾8

*

𝐾9

+ +

+

FIFO Buffer 1

FIFO Buffer 2

Data In

𝑟1

𝑟2

𝑟3

𝑟5

𝑟6

𝑟1

𝑟2

𝑟3

𝑟4

𝑟5

𝑟6

𝑟7

𝑟8

𝑟9

𝑟7

𝑟8

𝑟9

Register Window

+

+ +

+

+

Shift Divide

* Proposed Multiplier

𝐾𝑖= Kernel Elements

+ Adder

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1096

Table 2 Power dissipation of pipelined multipliers

Multiplier Logic & signals (mW)

BB [2] 3.72

BB+1ECC [2] 7.32

BB+2ECC [2] 10.66

BB+3ECC [2] 13.37

PROPOSED 6.59

Table 3 Operating frequency comparisons of proposed and other multipliers

Multiplier Pipelined(MHz)

MA [2] -

OD-MA [2] -

BB [2] 153.335

BB+1ECC [2] 153.335

BB+2ECC [2] 153.335

BB+3ECC [2] 153.335

PROPOSED 103.670

Fig.8 Simulation results of 16x16 KOM

Table 4 PSNR values

Type of multiplier PSNR of corrupt image(dB) PSNR of smoothened image(dB)

MA based multiplier[4] 14.4782 16.5914

Iterative multiplier 14.4782 18.88

Fig. 9 Input image

Fig.10 Image using proposed multiplier

© 2015 IJEDR | Volume 3, Issue 2 | ISSN: 2321-9939

IJEDR1502189 International Journal of Engineering Development and Research (www.ijedr.org) 1097

VI. CONCLUSION

For each and every system design power dissipation, speed and silicon area are the three factors to be looked . These factors

should in required levels, but optimization of all three factors at a time is not possible. Processors used in modern day systems

/gadgets operate at GHZ speed; most of the applications have very high graphics contents in them. For such applications speed of

DSP processor should be very high, while it should consume less power because most of devices will be portable and area of

these devices should be less. In general DSP algorithms involve in intensive multiplications and additions. Hence speed of

arithmetic components used in DSP processor should operate at high speed to keep track of non flickering graphical effects. A

novel approach for logarithmic multiplier is implemented in project. The proposed error free Mitchelle log multiplier (EFMLM)

satisfies all required conditions for modern design. EFMLM is synthesized using Xilinx ISE 14.5 on Spatran6 family device

XC6SLX45-CSG324. The multiplier uses less area compared to existing logarithmic multipliers. The PSNR of the implemented

multiplier is high when applied to noisy image to remove noise.

VII. REFERENCES

[1]D J McLaren, “Improved Mitchell-based Logarithmic Multiplier for low-power DSP applications,” Proceedings of IEEE

International System On Chip Conference, pp. 53-56, September 2003

[2]Patricio Buli´c, Zdenka Babi´c and Aleksej Avramovi´c, “An Iterative Logarithmic Multiplier,” International Journal on

Microprocessors and Microsystems, vol. 35, pp. 23-33, February 2011.

[3]Ramin Tajallipour, M d Islam and Khan A Wahid, “Fast Algorithm of A 64-bit Decimal Logarithmic Converter,” Journal of

Computers, vol. 5, no. 12, pp. 1847–1855, December 2010.

[4]Deeksha R Shetty, Savitha Patil “Improving Accuracy in Mitchell‟s Logarithmic Multiplication Using Iterative Multiplier for

Image Processing Application”International Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-3,

Issue-3, July 2013.

[5]Ajitha.S.S, Retheesh.D “Efficient Implementation OF BIT Parallel Finite Field Multipliers” IJRET ISSN: 2319-1163 Volume:

03 Issue: 03 Mar-2014.

[6]Satish S Bhairannawar1, Rathan R, Raja K B, Venugopal K R, L M Patnaik “FPGA Based Efficient Multiplier For Image

Processing Applications Using Recursive Error Free MITCHELL Log Multiplier And KOM Architecture” International Journal

of VLSI design & Communication Systems (VLSICS) Vol.5, No.3, June 2014

[7]Gang Zhou, Harald Michalik, and Laszlo Hinsenkamp.“ Complexity Analysis and Efficient Implementations of Bit Parallel

Finite Field Multipliers Based on Karatsuba-Ofman Algorithm on FPGAs,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 18, no. 7, pp 1057-1066, July 2010.

[8]D. K. Kostopoulos, “An Algorithm for the Computation of Binary Logarithms,” IEEE Transactions. on Comp., vol. 40, no. 11,

0018-9340/91, November. 1991.

[9]Mark G. Arnold, Jesus Garcia and Michael J. Schulte, “The Interval Logarithmic Number System,” International Workshop on

Power and Timing Modelling Optimization and Simulation,pp. 285–294, 2000.

[10]Bryson R. Payne, Saeid O. Belkasim, G. Scott Owen, Michael C. Weeks, and Ying Zhu, “Accelerated 2D Image Processing

on GPUs,” ICCS 2005, LNCS 3515, pp. 256 – 264, 2005.

[11]Muhammad H. Rais, “Efficient Hardware Realization of Truncated Multipliers using FPGA,” World Academy of Science,

Engineering and Technology, 2009.

[12]H. Erikssont, P. Larsson-Edeforst, M. Sheerant, M.Sjalandert, D. Johanssont, and M. Sch6lint, “Multiplier Reduction Tree

with Logarithmic Logic Depth and Regular Connectivity,” IEEE Transactions on Computers, January 2006.

