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Abstract - This paper presents the implementation of Fuzzy Neural Network (FNN) for clustering and classification. Fuzzy 

neural network combines the advantage of both fuzzy logic and neural network. This paper mainly focuses on 

implementation of two algorithms. First algorithm is General Fuzzy min max Neural Network (GFMM) training 

algorithm which combines the processing of supervised and unsupervised data in a single training algorithm. Second 

algorithm is Data Core Based Fuzzy min max Neural Network (DCFMN) which considers the characteristics of the data 

and influence of noise simultaneously. These two algorithms provide high accuracy, flexibility, better performance, strong 

robustness in classification and clustering.  

 

Index Terms - Classification, Clustering, Fuzzy systems, Fuzzy min-max neural networks ,Data core, Overlapped neuron, 

Pattern classification, Hyperboxes, Hyperbox expansion, Hyperbox contraction, Overlapping neurons, Classifying 

neurons ,Membership function, Robustness. 

________________________________________________________________________________________________________ 

I. INTRODUCTION 

Now a days fuzzy logic and neural network are greatly used  to develop intelligent systems .The main reason  to combine fuzzy 

logic and neural network is  that fuzzy logic have greater ability to handle approximate or uncertain information with the capability 

of neural networks in learning from processes. This paper presents implementation of two algorithms. One is General Fuzzy min-

max Neural Network (GFMM)[4] and second is Data Core Based Fuzzy min-max Neural Network (DCFMN)[7]. 

General Fuzzy min-max Neural Network (GFMM)[4] processes supervised  and unsupervised data in a single training 

algorithm. In labeled or supervised learning ,which is  also referred as a pattern classification problem, labels are provided with 

input patterns. In unlabeled or unsupervised learning, also called as a cluster analysis problem, the input pattern is unlabeled and 

we must deal with the splitting a set of input patterns into a number of more or less homogenous clusters with respect to a suitable 

similar property. Patterns which are similar are allocated to the same cluster, while the patterns which differ are put in different 

clusters.  

In many industrial processes, the measurement data may include noise caused by various kinds of processes which affects 

system performance and may decrease the accuracy of classification. Therefore, Data Core Based Fuzzy min max Neural 

Network (DCFMN) [7] algorithm is implemented to improve the performance of classification. 

II. RELATED WORK 

As we know recently a number of researches were conducted to explore the utilization of fuzzy neural network in clustering 

and classification. Based on the advantages of combining fuzzy logic and neural network, a fuzzy min–max neural network 

(FMNN) was proposed by Simpson for classification and clustering [1], [2]. FMNN was based on an aggregation of fuzzy 

hyperboxes which defined a region in an n-dimensional pattern space by its minimum and maximum points. The FMNN was used 

for classification by creating hyperboxes that belong to different classes. In [3], a new learning algorithm for the Simpson’s fuzzy 

min–max neural network is presented. It overcomes some undesired properties of the Simpson’s model: specifically, in it there 

are neither threshold that bound the dimension of the hyperboxes nor sensitivity parameters. In fact, the classification result does 

not depend on the presentation order of the patterns in the training set, and at each step, the classification error in the training set 

cannot increase. The [5] describes an approach to classification of noisy signals using a technique based on the fuzzy ARTMAP 

neural network (FAMNN).In [6] robust fuzzy neural network (RFNN) sliding-mode control based on computed torque control 

design for a two-axis motion control system is proposed. The two-axis motion control system is an x-y table composed of two 

permanent-magnet linear synchronous motors. First, a single- axis motion dynamics with the introduction of a lumped uncertainty 

including cross-coupled interference between the two-axis mechanisms is derived. Then, to improve the control performance in 

reference contours tracking, the RFNN sliding-mode control system is proposed to effectively approximate equivalent control of 

the sliding-mode control method .In [8] a fuzzy wavelet neural network (FWNN) models for prediction and identification of 

nonlinear dynamical systems are presented. The impressive generalization capability of the presented FWNN models is derived 

primarily from the use of wavelets and their ability to localize both in time and frequency domains. These models use wavelet 

functions in the consequent part of fuzzy rules, and with these functions the FWNN models have fast convergence and high 

precision. In [9], author study the guaranteed cost control problem for stochastic fuzzy systems with multiple time delays and 

uncertain parameters. In [10] two new learning algorithms for fuzzy min-max neural classifiers are proposed: the adaptive 

resolution classifier (ARC) and its pruning version(PARC). ARC/PARC generates a regularized min-max network by a 
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succession of hyperbox cuts. The generalization capability of ARC/PARC technique mostly depends on the adopted cutting 

strategy. By using a recursive cutting procedure (RARC and R-PARC) it is possible to obtain better results. 

III. SYSTEM ARCHITECTURE 

This paper presents the implementation of a fuzzy neural network for clustering and classification. In this fuzzy neural network 

two training algorithm are implemented for clustering and classification. First algorithm is General Fuzzy min max Neural Network 

(GFMM)[4] and second is Data Core Based Fuzzy min max Neural Network (DCFMN)[7]. In GFMM single training algorithm is 

required to processes labeled and unlabeled input patterns. In this algorithm learning process is completed in a few passes through 

the data and of placing and adjusting the hyperboxes in the pattern space which is referred as an expansion–contraction process. To 

retaining all the interesting features, a number of modifications to their definition have been made in order to accommodate fuzzy 

input patterns in the form of lower and upper bounds, combine the labeled and unlabeled input patterns, and improve the 

effectiveness of system , but in GFMM new data can be included without retraining of data. DCFMN considers the characteristics 

of the data and influence of noise simultaneously while performing classification. In DCFMN , membership function has been 

designed based on the geometric center and data core in a hyperbox. Instead of using the contraction process, overlapped neuron 

with new membership function based on the data core is proposed and added to neural network to represent the overlapping area of 

hyperboxes belonging to different classes. DCFMN has strong robustness and high accuracy in classification taking onto account 

the effect of data core and noise. The general architecture of the proposed system is shown in figure.1 

 

 
Figure.1 General System Architecture 

 

A. General Fuzzy min max neural network (GFMM) Algorithm 

GFMM algorithm consist of mainly four steps which are Initialization, Expansion, Overlap Test, and Contraction. 

 

Basic Terms : 

     First we see some basic terms that are used in this algorithm 

1. Input: 

    Input provided to the GFMM algorithm is in the form of ordered pair as 

 

                                                            {𝑋ℎ,𝑑ℎ}                                                          (1) 

  
where 𝑋ℎ is the ℎ𝑡ℎ input pattern and 𝑑ℎ ∈ {1,2,…,𝑝} is the index of one of the 𝑝+1 classes, where 𝑑ℎ =0 means that the input 

pattern is unlabeled. 

 

2. Fuzzy Hyperbox Membership Function: 

     Fuzzy Hyperbox Membership Function is very important in fuzzy min max neural network algorithm. The decision whether 

the given input pattern belongs to a particular class or cluster, thus whether the corresponding hyperbox is to be expanded, 

depends mainly on the membership value describing the degree to which an input pattern fits within the hyperbox .In GFMM 

algorithm the membership function of 𝑗𝑡ℎ hyperbox for ℎ𝑡ℎ input pattern is calculated as 

 

𝑏𝑗(𝑋ℎ)=min
𝑖=1..,𝑛

(min⁡([1 − 𝑓(𝑥ℎ𝑖
𝑢 − 𝑤𝑗𝑖 , 𝛾𝑖)], 

                                        [1 − 𝑓(𝑣𝑗𝑖 − 𝑥ℎ𝑖
𝑙 , 𝛾𝑖)] ))                                                           (2) 

Where 𝑓(𝑟, 𝛾)={

1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑟𝛾 > 1
𝑟𝛾⁡⁡⁡⁡𝑖𝑓⁡0 ≤ 𝑟𝛾 ≤ 1⁡
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖𝑓⁡𝑟𝛾 < 0

 

Where 𝑥ℎ𝑖
𝑙 ⁡and 𝑥ℎ𝑖⁡⁡

𝑢 is the lower and upper limit of⁡ℎ𝑡ℎ input pattern, 𝑣𝑗𝑖 and 𝑤𝑗𝑖 is the min and max points of 𝑗𝑡ℎ hyperbox and 

threshold function; 𝛾=[ 𝛾1,𝛾2,…,𝛾𝑛]—sensitivity parameters which regulates how fast the membership values decrease. 

GFMM Learning Algorithm 
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1. Initialization : Initially min point 𝑉𝑗 and max point 𝑊𝑗 of 𝑗𝑡ℎ hyperbox set to 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑉𝑗 = 0⁡⁡𝑎𝑛𝑑⁡⁡⁡𝑊𝑗 = 0                                                                    (3) 

When first input pattern is presented 𝑗𝑡ℎ hyperbox adjusted and   min and max points set to 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑉𝑗 ⁡= ⁡ 𝑥ℎ
𝑙 ⁡𝑎𝑛𝑑⁡⁡⁡𝑊𝑗 = 𝑥ℎ⁡⁡

𝑢                                                              (4) 

 

2. Hyperbox Expansion : When the input pattern is presented, find the hyperbox with the highest degree of membership and 

allowing expansion (if needed) is expanded to include input pattern . Expansion criteria is 

 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀i=1…n(max(wji, xhi
u ) − min⁡(vji, xhi

l ))  ≤ θ                                       (5) 

And 

if⁡dh = 0⁡then⁡adjust⁡Bj 

else 

                                    if⁡class(Bj) = 

{
 
 

 
 
0⁡⁡⁡⁡ ⇒ adjust⁡Bj⁡

class(Bj) = dh
dh ⁡⁡⁡⇒ ⁡adjust⁡Bj⁡

take
else ⇒ another⁡⁡Bj

                                          (6) 

 

 

We adjust ⁡𝐵𝑗 ⁡ in following way. 

 

vji
new = min(vji

old, xhi
l ) ⁡⁡for⁡each⁡i = 1,… , n 

wji
new = max(wji

old, xhi
u ) ⁡⁡for⁡each⁡i = 1,… , n 

 

If none of the existing hyperboxes can expand to include the input pattern 𝑥ℎ , then a new hyperbox 𝐵𝑘 is created, adjusted, and 

labeled by setting 𝑐𝑙𝑎𝑠𝑠(𝐵𝑘)=⁡𝑑ℎ. 

The θ is a user-defined parameter that define a bound on the maximum size of a hyperbox and its value significantly affects the 

effectiveness of the training algorithm. 

 

3. Hyperbox Overlap Test: Due to inclusion of input patterns hyperboxes of different classes are overlapped with each other .So 

to detect overlapping between hyperboxes overlap test is performed as follows 

 If the hyperbox, expanded in the last expansion step ,is not labeled then test for overlapping with all the other 

hyperboxes. This ensures that all unlabeled hyperboxes do not overlap with any of the other existing ones. 

 If the hyperbox 𝐵𝑗 expanded in the last expansion step,belongs to one of the existing classes then test for the overlap only 

with the hyperboxes not being part of the same class as 𝐵𝑗. Notice that this allows to overlap the hyperboxes belonging to 

the same class. 

 

The full hyperbox overlap test can be therefore summarized as follows. 

 

                                     class(Bj) =

{
 

 
0⁡⁡⁡⁡⁡⁡⁡⁡⁡ ⇒ ⁡test⁡overlapping⁡with⁡

𝑎𝑙𝑙⁡𝑜𝑡ℎ𝑒𝑟⁡ℎ𝑦𝑝𝑒𝑟𝑏𝑜𝑥𝑒𝑠
𝑒𝑙𝑠𝑒 ⇒ ⁡𝑡𝑒𝑠𝑡⁡𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔⁡𝑜𝑛𝑙𝑦⁡𝑖𝑓

𝑐𝑙𝑎𝑠𝑠(𝐵𝑗) ≠ 𝑐𝑙𝑎𝑠𝑠(𝐵𝑘)

                           (7) 

 

The four cases are being considered (where initially 𝜕𝑜𝑙𝑑=1). 

 

           Case 1:𝑣𝑗𝑖 < 𝑣𝑘𝑖 < 𝑤𝑗𝑖 < 𝑤𝑘𝑖 

⁡⁡𝜕𝑛𝑒𝑤 = min⁡(𝑤𝑗𝑖 − 𝑣𝑘𝑖 , 𝜕
𝑜𝑙𝑑). 

           Case 2:𝑣𝑘𝑖 < 𝑣𝑗𝑖 < 𝑤𝑘𝑖 < 𝑤𝑗𝑖 

⁡𝜕𝑛𝑒𝑤 = min⁡(𝑤𝑘𝑖 − 𝑣𝑗𝑖 , 𝜕
𝑜𝑙𝑑). 

           Case 3:𝑣𝑗𝑖 < 𝑣𝑘𝑖 ≤ 𝑤𝑘𝑖 < 𝑤𝑗𝑖 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜕𝑛𝑒𝑤 = min⁡(min(𝑤𝑘𝑖 − 𝑣𝑗𝑖 , 𝑤𝑗𝑖 − 𝑣𝑘𝑖) , 𝜕
𝑜𝑙𝑑). 

           Case 4:𝑣𝑘𝑖 < 𝑣𝑗𝑖 ≤ 𝑤𝑗𝑖 < 𝑤𝑘𝑖 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜕𝑛𝑒𝑤 = min⁡(min(𝑤𝑘𝑖 − 𝑣𝑗𝑖 , 𝑤𝑗𝑖 − 𝑣𝑘𝑖) , 𝜕
𝑜𝑙𝑑). 
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If overlap for the 𝑖𝑡ℎ dimension has been detected (one of the above four cases is valid) and 𝜕𝑜𝑙𝑑 − 𝜕𝑛𝑒𝑤 > 0⁡, then  ∆=i, 𝜕𝑜𝑙𝑑= 

𝜕𝑛𝑒𝑤  and 𝑐𝑎𝑠𝑒 = 𝑙 (𝑙= {1,2,3,4}− the case for which the smallest overlap was found). If overlap for the⁡𝑖𝑡ℎdimension has not been 

detected, set Δ=−1 which indicate that the contraction step is not necessary. 

 

4. Hyperbox Contraction: If Δ>0⁡then only the Δ𝑡ℎ dimensions of the two hyperboxes are adjusted. For contraction again four 

cases are being considered. 

 

        Case 1:𝑣𝑗∆ < 𝑣𝑘∆ < 𝑤𝑗∆ < 𝑤𝑘∆ 

𝑣𝑘∆
𝑛𝑒𝑤 = 𝑤𝑗∆

𝑛𝑒𝑤 =
𝑣𝑘∆
𝑜𝑙𝑑 +𝑤𝑗∆

𝑜𝑙𝑑

2
 

or alternatively (𝑤𝑗∆
𝑛𝑒𝑤=𝑣𝑘∆

𝑜𝑙𝑑). 

        Case 2:𝑣𝑘∆ < 𝑣𝑗∆ < 𝑤𝑘∆ < 𝑤𝑗∆ 

𝑣𝑗∆
𝑛𝑒𝑤 = 𝑤𝑘∆

𝑛𝑒𝑤 =
𝑣𝑗∆
𝑜𝑙𝑑 +𝑤𝑘∆

𝑜𝑙𝑑

2
 

or alternatively (𝑣𝑗∆
𝑛𝑒𝑤=𝑤𝑘∆

𝑜𝑙𝑑). 

                    Case 3:𝑣𝑗∆ < 𝑣𝑘∆ ≤ 𝑤𝑘∆ < 𝑤𝑗∆ 

𝑖𝑓⁡𝑤𝑘∆ −⁡𝑣𝑗∆ < 𝑤𝑗∆ − 𝑣𝑘∆ 

                        𝑡ℎ𝑒𝑛⁡⁡𝑣𝑗∆
𝑛𝑒𝑤 = 𝑤𝑘∆

𝑜𝑙𝑑 ⁡otherwise    (𝑤𝑗∆
𝑛𝑒𝑤=𝑣𝑘∆

𝑛𝑒𝑤) 

         Case 4:𝑣𝑘∆ < 𝑣𝑗∆ ≤ 𝑤𝑗∆ < 𝑤𝑘∆ 

𝑖𝑓⁡𝑤𝑘∆ −⁡𝑣𝑗∆ < 𝑤𝑗∆ − 𝑣𝑘∆ 

                𝑡ℎ𝑒𝑛⁡⁡𝑤𝑘∆
𝑛𝑒𝑤 = 𝑣𝑗∆

𝑜𝑙𝑑    otherwise    (𝑣𝑘∆
𝑛𝑒𝑤=𝑤𝑗∆

𝑜𝑙𝑑). 

 

B. Data Core Based Fuzzy min max Neural Network (DCFMN) Algorithm:  

In DCFMN a new membership function for classifying the neuron of DCFMN is defined in which the noise, the geometric 

center of the hyperbox, and the data core are considered. 

  

1. CN Membership Function: For considering the influence of noise and the density of data in the hyperbox, an improved 

hyperbox membership function of CN is defined as follows: 

 

𝑏𝑗(𝑥ℎ)= min
𝑖=1,..,𝑛

(min⁡(𝑓(𝑥ℎ𝑖 −𝑤𝑗𝑖 + 𝜀, 𝑐𝑗𝑖), 

                                       ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓(𝑣𝑗𝑖 + 𝜀 − 𝑥ℎ𝑖 , 𝑐𝑗𝑖))))                                                                          (8) 

 

 where ε is a parameter representing noise, c is difference between the data core in the hyperbox and the geometric center of the 

corresponding hyperbox, and  f  is the ramp threshold function which is defined as. 

 

𝑓(𝑟, 𝑐) = {
𝑒−𝑟

2×(1+𝑐)×𝜆, 𝑟 > 0, 𝑐 > 0

𝑒−𝑟
2×(1−𝑐)×1/𝜆, 𝑟 > 0, 𝑐 < 0
1,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑟 < 0

 

 

2. OLN Membership Function: An OLN is created when there is an overlapping area between two hyperboxes that belong to 

two different classes  𝑉′, ⁡𝑊′ nodes in OLN represent the minimum and maximum points of the overlapped area. The activation 

function used for OLN is given by 

do,q(xh) = g(vo
′ , wo

′ , xh, yq) 

                                                            ={
1

𝑛

0,
∑ (1 − |𝑥ℎ𝑖 − 𝑦𝑞𝑖|)
𝑛
𝑖=1 ,∀𝑖=1,..𝑛𝑤𝑜𝑖 > (𝑥ℎ𝑖) > 𝑣𝑜𝑖                               (9) 

 

where o = 1, 2, . . . , l is the index of overlapped node, q =1, 2 is the index of hyperbox which has the same overlap, 

and⁡⁡𝑦𝑞  is the data core of each overlapped hyperbox. 

 

 

DCFMN Learning Algorithm 

DCFMN algorithm consist of three steps as follows: 

1. Hyperbox Expansion:  Identify the expandable hyperboxes and expand them. For the hyperbox to be expanded, the following 

expansion criteria  must be met: 

 

                                              ∀𝑖=1,..,𝑛,𝑗=1,..,𝑚(max(𝑤𝑗𝑖,𝑥ℎ𝑖) − min⁡(𝑣𝑗𝑖 , 𝑥ℎ𝑖)) ≤ 𝜃                                                    (10) 

 

If the expansion constraint condition is met in DCFMN, the minimum and maximum points of the hyperbox are adjusted as 

follows: 
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𝑣𝑗𝑖
𝑛𝑒𝑤 = min(𝑣𝑗𝑖

𝑜𝑙𝑑, 𝑥ℎ𝑖
𝑙 ) ⁡⁡𝑓𝑜𝑟⁡𝑒𝑎𝑐ℎ⁡𝑖 = 1,… , 𝑛 

𝑤𝑗𝑖
𝑛𝑒𝑤 = max(𝑤𝑗𝑖

𝑜𝑙𝑑 , 𝑥ℎ𝑖
𝑢 ) ⁡⁡𝑓𝑜𝑟⁡𝑒𝑎𝑐ℎ⁡𝑖 = 1,… , 𝑛 

 

 

2. Hyperbox Overlap Test : Due to inclusion of input patterns two hyperboxes are overlapped with other. So detect overlapping 

between hyperbox of different classes overlap test is performed. Assuming that 𝛼𝑜𝑙𝑑= 1 initially, the four test cases and the 

corresponding minimum overlap value for the 𝑖𝑡ℎ  dimension is as follows. 

      Case 1:𝑣𝑗𝑖 < 𝑣𝑘𝑖 < 𝑤𝑗𝑖 < 𝑤𝑘𝑖 

                                                                           𝛼𝑛𝑒𝑤 = min⁡(𝑤𝑗𝑖 − 𝑣𝑘𝑖 , 𝛼
𝑜𝑙𝑑). 

      Case 2:𝑣𝑘𝑖 < 𝑣𝑗𝑖 < 𝑤𝑘𝑖 < 𝑤𝑗𝑖 

𝛼𝑛𝑒𝑤 = min⁡(𝑤𝑘𝑖 − 𝑣𝑗𝑖 , 𝛼
𝑜𝑙𝑑). 

      Case 3:𝑣𝑗𝑖 < 𝑣𝑘𝑖 ≤ 𝑤𝑘𝑖 < 𝑤𝑗𝑖 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼𝑛𝑒𝑤 = min⁡(min(𝑤𝑘𝑖 − 𝑣𝑗𝑖 , 𝑤𝑗𝑖 − 𝑣𝑘𝑖) , 𝛼
𝑜𝑙𝑑). 

                       Case 4:𝑣𝑘𝑖 < 𝑣𝑗𝑖 ≤ 𝑤𝑗𝑖 < 𝑤𝑘𝑖 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝛼𝑛𝑒𝑤 = min⁡(min(𝑤𝑘𝑖 − 𝑣𝑗𝑖 , 𝑤𝑗𝑖 − 𝑣𝑘𝑖) , 𝛼
𝑜𝑙𝑑). 

 

If 𝛼𝑜𝑙𝑑−𝛼𝑛𝑒𝑤  > 0, then there is an overlap for the 𝑖𝑡ℎ dimensions, and let ∆ = i . Otherwise, the test stops and set 𝑖𝑡ℎ = 0, and 

nothing is done. 

 

3. Adding OLN - If an overlap between hyperboxes of different classes exists, the process of adding OLN is performed as 

follows. 

     Case1:⁡𝑣𝑗𝑖 < 𝑣𝑘𝑖 < 𝑤𝑗𝑖 < 𝑤𝑘𝑖 

𝑣𝑚+𝑜𝑖
′ = 𝑣𝑘𝑖⁡⁡, 𝑤𝑚+𝑜𝑖

′ = 𝑤𝑗𝑖 

     Case 2:𝑣𝑘𝑖 < 𝑣𝑗𝑖 < 𝑤𝑘𝑖 < 𝑤𝑗𝑖 

𝑣𝑚+𝑜𝑖
′ = 𝑣𝑗𝑖⁡⁡, 𝑤𝑚+𝑜𝑖

′ = 𝑤𝑘𝑖. 

     Case 3:𝑣𝑗𝑖 < 𝑣𝑘𝑖 ≤ 𝑤𝑘𝑖 < 𝑤𝑗𝑖 

𝑣𝑚+𝑜𝑖
′ = 𝑣𝑘𝑖⁡⁡, 𝑤𝑚+𝑜𝑖

′ = 𝑤𝑘𝑖 
     Case 4:𝑣𝑘𝑖 < 𝑣𝑗𝑖 ≤ 𝑤𝑗𝑖 < 𝑤𝑘𝑖 

𝑣𝑚+𝑜𝑖
′ = 𝑣𝑗𝑖⁡⁡, 𝑤𝑚+𝑜𝑖

′ = 𝑤𝑗𝑖 

 

where o = (1, 2, . . . , l) is index of neuron to be added to the network, and  𝑉′ and 𝑊′ are used to store the minimum and 

maximum points of the hyperboxes. 

 

IV. IMPLEMENTATION DETAILS 

This system mainly presents implementation of two algorithm, GFMM and DCFMN and our objective is to implements these 

two algorithm for standard datasets iris and wine .GFMM is four step algorithm which are Initialization, Expansion, Overlap Test, 

and Contraction which are successfully completed and gives desired output. 

Figure 2.shows browsing of dataset as input for our system .Iris dataset is browsed which contains 150 records of three 

classes .All input patterns are labeled. 

 

 
 

Figure 2: Browsing  dataset 
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Figure 3. shows that number of hyperboxes created of different classes , here user defined parameter θ set  0.1 and number of 

hyperboxes created is 139. As we increase value of  θ from 0.1 to 0.9 ,number of hyperboxes created is decreases. 

 

 

 
 

Figure 3: Number of Hyperboxes created. 

      
Figure 4. Shows overlapping found between hyperboxes and contraction of hyperboxes performed to remove overlapping of 

hyperboxes of different classes. 

 

 
 

Figure 4: Overlap test and contraction 

 

Up to this step training of algorithm is completed , now testing is performed by presenting input pattern to the system and system 

classify that input pattern correctly and displaying class of that input pattern which shown in figure 5. Misclassification rate of 

GFMM algorithm is very less.  

   

 
 

Figure 5: Classify input pattern 
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V. CONCLUSION 

 

This paper presents the implementation of fuzzy neural network for clustering and classification which uses two training 

algorithm for clustering and classification. These two training algorithm is based on fuzzy logic and neural network. First algorithm 

is General Fuzzy min max Neural Network which combines the processing of supervised and un supervised input data within a 

single training algorithm and provide better performance. Second algorithm is Data Core Based Fuzzy min max Neural Network 

which considers the characteristics of the data and influence of noise simultaneously and provide strong robustness against noise 

and better performance in classification 
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