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Abstract - Denoising is a process of reduction of noise from signals. There are various techniques of denoising methods for 

one dimensional signals. Our motivation of this paper is to study and highlight the approaches which has been discussed 

and analyzed earlier. Based on the study   some better methodology with the loop area is suggested where some method 

for better noise reduction can be applied. A thresholding Blackman windowed Gabor transforms, a robust wavelet-based 

estimator using a robust loss Function are compared with Gauss-windowed Gabor threshold denoising and wavelet-based 

denoising, and is found to be superior in most cases. 

 

Index Terms - Signals, Denoising, Thresholding Blackman windowed Gabor transforms, Wavelet-based denoising. 
________________________________________________________________________________________________________ 

 

I. INTRODUCTION 

In real world, signals do not exist without noise, which may be negligible (i.e. high SNR) under certain conditions. The process of 

noise reduction is  referred to as signal denoising or simply denoising. The noise adds high-frequency components to the original 

signal which is smooth, a characteristic effect of noise. During transmission, processing and reception, these signals get corrupted 

by noise. Therefore, it has been very necessary to device an effective method to remove these unwanted noises from these signals 

of importance. For this purpose various signal de-noising techniques such as linear methods (Fourier transform de-noising, 

Wiener filtering) and non-linear methods (wavelet transform de-noising) have been proposed by the researchers. Linear methods 

of signal de-noising have been widely used for noise removing up to 1990, because of their relative simplicity. However, since 

these methods are based upon the assumption that the signals are stationary, their effectiveness is generally acceptable but limited. 

But in reality, real-world signals have typically non-stationary statistical characteristics. Therefore, nonlinear methods like 

wavelet transform, thresholding Blackman windowed Gabor transforms, Gauss-windowed Gabor threshold denoising have been 

an active area of research for last two decades because of their ability to elucidate, simultaneously, the spectral and temporal 

information in a signal [1].The performance of the proposed method is evaluated by computing the signal-to-noise ratio (SNR) 

and the root-mean-square error (RMSE) after denoising. Results reveal that the proposed method offers superior performance than 

the traditional methods no matter whether the signals have heavy or light noises embedded.[2] 

There is a wide range of applications where denoising is important. Examples are medical signal analysis, data mining, radio 

astronomy etc. Each application has its special requirements, like noise removal in medical signals requires special care, involves 

smoothing of the noisy signal (e.g., using low-pass filter) may cause the loss of details. There are many approaches in the 

literature for the task of denoising, roughly divided into two categories: denoising in the original signal domain (e.g., time or 

space) and denoising in the transform domain (e.g., Fourier or wavelet transform).[3]  

In [4], wavelet transform is used for denoising techniques. The hard and soft thresholding are used, but there is a main drawback 

i.e. around discontinuities it creates Gibbs phenomenon. Here, traditional method of total variation minimization is used for 

denoising. 

Due to simple calculation and good denoising effect, in [5] wavelet threshold denoising method has been discussed. Here, 

threshold is an important parameter that affects the denoising effect. To improve the denoising, a new threshold considering 

interscale correlation is presented. Another signal denoising method based on the classical three step procedure analysis-

threshold-synthesis and the Spectral Intrinsic Decomposition (SID) in [6]. This method consists of an iterative thresholding of the 

SID components. The SID-based removal method reduces noise and can retain useful discontinuities of the signal as effectively as 

the wavelet techniques based on soft thresholding.Also, using discrete wavelet transforms using different wavelet bases 

(Daubechies and Symlets) [7], reduce the background noise in speech signals. In [8], a time-domain method for smoothing and 

reducing the noise level in LiDAR data, where Singular Value Decomposition (SVD) based Savitzky-Golay (S-G) approach is 

used. 

The remainder of this paper is organized as follows: Section 2 summarizes the basic theory of some denoising techniques. Finally, 

conclusions are given in Section 3. 

 

II. DENOISING TECHNIQUES 

 

A thresholding Blackman windowed Gabor transforms :  A Gabor transform of f, with window function w, is defined as 

follows. First, multiply {f(𝑡𝑘)} by a sequence of shifted window functions {w(𝑡𝑘 −𝜏𝑚)}, producing a sequence of time localized 

subsignals,{f(𝑡𝑘)w(𝑡𝑘  − 𝜏𝑚 )}𝑚=1
𝑀 . Uniformly spaced time values {𝜏𝑚}𝑚=1

M  are used for the shifts. The windows {w(𝑡𝑘  − 𝜏𝑚)} 
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are all compactly supported and overlap each other. Second, because w is compactly supported one treated each subsignal 

{f(𝑡𝑘  )w(𝑡𝑘  − 𝜏𝑚)} as a finite sequence and apply an N-point FFT ℱ to it. This yields the Gabor transform of {f(𝑡𝑘 )}: 

               {ℱ{f(𝑡𝑘 ) w(𝑡𝑘  − 𝜏𝑚 )}𝑚=1
𝑀 .               [13]  

Here, proposed method Hard Gabor (Blackman), compared with three other methods: 

Hard Gabor (Gauss) and two wavelet based methods Sure Shrink and Bayes Shrink. One compared MSEs for test signals using 

data for Hard 

 

 
                                                                                              Fig 1. Four signals 

Gabor (Blackman) and Sure Shrink, and data for Bayes Shrink generated from the MATLAB code. The test signals are called 

Bumps, Heavisine, Doppler, Blocks. For the three sample sizes, Ns = 512, Ns = 2048, and Ns = 8192, these signals were obtained 

from uniform samples over the interval 0 ≤ t < 1.  

 

TABLE 1: AVERAGE MSES ON DENOISING TEST SIGNALS FOR SAMPLES Ns. GAB-G IS HARD GABOR (GAUSS), 

SSHR IS SURESHRINK, BSHR IS BAYESSHRINK, AND GAB-B IS HARD GABOR (BLACKMAN). 

SIGNAL Ns GAB-G SSHR BSHR GAB-B 

Bumps 512 

2048 

8192 

0.31 

0.11 

0.04 

0.38 

0.13 

0.04 

0.43 

0.14 

0.04 

0.33 

0.10 

0.02 

Heavisine 512 

2048 

8192 

0.25 

0.10 

0.05 

0.14 

0.07 

0.04 

0.14 

0.05 

0.02 

0.26 

0.10 

0.04 

Doppler 512 

2048 

8192 

0.30 

0.10 

0.03 

0.29 

0.11 

0.05 

0.25 

0.09 

0.02 

0.29 

0.06 

0.01 

Blocks 512 

2048 

8192 

0.87 

0.57 

0.30 

0.49 

0.25 

0.11 

0.57 

0.25 

0.10 

1.13 

0.58 

0.28 

 

In Table 1, the results of comparison of MSEs for the four methods are shown. Averages were taken using 100 realizations of 

noisy signals. These results indicates outperforms both Hard Gabor (Gauss) and Sure Shrink on two-thirds of the data, and 

outperforms Bayes Shrink on slightly more than half the data.  

One advantage, method is extremely simple where it does not employ advanced Bayesian statistical modelling like 

Bayes Shrink, hence there is room for improvement.  

 

Wave shrink and Basis pursuit of Wavelet Transform: Wave shrink and basis pursuit are two nonparametric expansion based 

estimators, represented by a linear combination of wavelet basis functions, namely where are the wavelet coefficients. Wave 

shrink is defined for orthonormal wavelets only whereas basis pursuit can also use an “over complete” basis .The goal of Wave 

shrink and basis pursuit is to estimate the wavelet coefficients to have a good mean squared error MSE where the expectation is 

taken over.  
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Waveshrink uses orthonormal wavelets, which has two important consequences: First, the least squares estimate is simply, where 

is the matrix of discretized , and denotes the transpose of; second, is an unbiased estimate of , and its covariance matrix is so that 

the estimated least squares coefficients are independent if the noise is Gaussian.  For Gaussian noise, the shrinkage can be applied 

to component-wise because its components are independent. 

 

TABLE 2: RELATIVE PREDICTIVE PERFORMANCE OF BASIS PURSUIT (c = ∞) AND ROBUST BASIS PURSUIT (c = 

2:0; c = 1:345). (G: GAUSSIAN; C: CONTAMINATED; T: STUDENT) 

N C BLOCKS BUMPS 

  G         C          T G         C          T 

1024 ∞ 

2.0 

1.345 

46       109 137 

77       103 114 

141     167 179 

47     103    130 

190   220   240 

860    884  913 

4096 ∞ 

2.0 

1.345 

21        69    91 

33        44    49 

58        67    72 

18        62   85    

24       35    38 

104    114   109 

N C HEAVISINE DOPPLER 

  G         C          T G         C          T 

1024 ∞ 

2.0 

1.345 

17       71     91 

17       27     33 

20       26     30 

33      85    109 

34      49      58 

47       59     67 

4096 ∞ 

2.0 

1.345 

7         50      68 

7         11      13 

9         11      12 

11       55     76 

11       17     20 

15       19     22 

 

Here, one performed a Monte Carlo experiment to evaluate the relative performance of the non robust and robust wavelet-based 

estimators with three noise scenarios: 

• (G) standard Gaussian noise; 

• (C) a mixture of 90% Gaussian (0,1) and 10% Gaussian(0,16) at random locations; 

• (T) Student noise with three degrees of freedom. 

 

The four test functions plotted in Fig. 1: blocks, bumps, heavisine and Doppler are used, by normalize them such that their 

“standard deviation” is equal to 7. 

     ∫
1

0
(𝑓(𝑥) − 𝑓)̅

2
𝑑𝑥 = 49  

        Where 𝑓̅ = ∫ 𝑓(𝑥)
1

0
𝑑𝑥                             [14] 

 

Choosen two sample sizes of N=1024 and N=4096, and the “s8” wavelet packet dictionary with all but four levels. The minimax 

smoothing parameters are 2.232 and 2.594.  

For each combination of noise (G, C, T) of underlying function (blocks, bumps, heavisine,  Doppler), of sample size 

(N=1024 and N=4096), and of procedure (non robust , robust), it is estimated the MSE by averaging (40)(1024)/N model errors 

(i.e., 40 for N = 1024 and 10 for N = 4096 to get the same number of points is generated for the two sample sizes).  

 

Here, achieved on a particular simulation that robust basis pursuit has a good predictive performance with both Gaussian and 

long-tailed symmetric additive noise; in particular, it is recommended using a cut point of at least c=2 for the Huber loss function. 

As illustrated with two applications, robust basis pursuit has a definite advantage over both a non robust wavelet-based estimator 

and a median filter estimator. 

 

III. CONCLUSION 

In this paper, analyzing methods for denoising of one dimensional signals, Hard Gabor (Blackman), outperforms and Sure Shrink 

for two thirds of tested data, and outperforms Bayes Shrink on slightly more than half of tested data. A particular simulation that 

robust basis pursuit has a good predictive performance with both Gaussian and long-tailed symmetric additive noise. As 

illustrated with two applications, robust basis pursuit has a definite advantage over both a non robust wavelet-based estimator and 

a median filter estimator. 
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