
© 2015 IJEDR | Volume 3, Issue 3 | ISSN: 2321-9939

IJEDR1503092 International Journal of Engineering Development and Research (www.ijedr.org) 1

Design and Implementation of Serial Peripheral
Interface Protocol Using Verilog HDL

Fareha Naqvi 1
1 Student

Department of Electronics and Communication Engineering,
Alfalah School of Engineering & Technology,

Maharishi Dayanand University, Rohtak, Haryana, India
__

Abstract - The objective of this paper is the design and implementation of SPI (serial peripheral interface) master and
slave using verilog HDL. The SPI (serial peripheral interface) is a type of serial communication protocol that transfers
synchronous serial data in full duplex mode. There are two modes of communications in SPI viz., master and slave. While
the master device generates serial clock, the slave devices are allowed with individual slave select lines and the whole
design is simulated and synthesized with Xilinx ISE design suite 13.3.1

Keywords - SPI (serial peripheral interface), Verilog HDL.
__
I. INTRODUCTION
Serial to Peripheral Interface (SPI) is a hardware/firmware communications protocol developed by Motorola and later adopted by
others in the industry. Sometimes SPI is also called a "four wire" serial bus.The Serial Peripheral Interface or SPI-bus is a simple
4-wire serial communications interface used by many microprocessor/microcontroller peripheral chips that enables the controllers
and peripheral devices to communicate with each other. Even though it is developed primarily for the communication between
host processor and peripherals, a connection of two processors via SPI is just as well possible. The SPI bus, which operates at full,
is a synchronous type data link setup with a Master / Slave interface . Both single-master and multi-master protocols are possible
in SPI. The SPI Bus is usually used only on the PCB. The SPI Bus was designed to transfer data between various IC chips, at very
high speeds

II. SERIAL PERIPHERAL INTERFACE DESIGN
The internal architecture of SPI mainly consists of two modules, master module and slave module as shown in figure 1. The SPI
module allows a full duplex, synchronous, serial communication between the MCU and peripheral devices [1]. The main parts of
the SPI are status, control and data registers, shifter logic, baud rate generator, master/slave control logic and port control logic.
Software can poll the SPI status flags or the SPI operation can be interrupt driven. The SPI module has a total of 4 external pins:

• Master out Slave in (MOSI) - Output data from the master to the inputs of the slaves.
• Master in Slave out (MISO) - Output data from a slave to the input of the master.
• Serial Clock (SCLK) - Clock driven by the master to slaves, used to synchronize the data bits.
• Slave Select (SS) - Select signal driven by the master to individual slaves, used to select the target slave [2].

Figure 1: SPI Block Diagram

The main element of the SPI system is the SPI Control Register and the SPI Data Register. The control word written into the
Control Register determines the mode in which the SPI shall be configured. The 8-bit data register in the master and the 8-bit data
register in the slave are linked by the MOSI and MISO pins to form a distributed 16-bit register. When a data transfer operation is
performed, this 16-bit register is serially shifted eight bit positions by the serial clock from the master. Consequently, data is
exchanged between the master and the slave. Data written to the master SPI Data Register becomes the output data for the slave,
and data read from the master SPI Data Register after a transfer operation is the input data from the slave. The SPI system
operates in two modes master and slave.

© 2015 IJEDR | Volume 3, Issue 3 | ISSN: 2321-9939

IJEDR1503092 International Journal of Engineering Development and Research (www.ijedr.org) 2

III. MASTER MODE OPERATION
The SPI operates in master mode when the MSTR control bit is set. The transmission begins by writing to the master SPI
Transmit Data Register. If the shift register is empty, the byte immediately transfers to the shift register. Once the byte is
transferred from the SPI transmit register to the shift register, the SPTE control bit is set indicating that another byte can be
written to the SPI transmit data register. In master mode, before transmission SS pin is connected to VDD if the single slave
module is used. Then the byte begins shifting out a bit at a time on the MOSI pin synchronized with the master serial clock. The
data transmission will continue for 8 clock cycles, transferring all 8-bits. The transmission ends when the whole byte is shifted out
of the master SPI shift register into the slave SPI shift register. The slave shift register is then automatically transferred to the
slave SPI receive data register if it is empty. The SPRF control bit is set indicating that the SPI receive register is full and waiting
to be read [3].

IV. SLAVE MODE OPERATION
The SPI operates in slave mode when the MSTR bit in SPI .In slave mode, SCK is the SPI clock input from the master, the
function of the serial data output pin (MISO) and serial data input pin (MOSI) is determined by the SPC0 bit and BIDIROE bit in
SPI Control Register 2. And the SS pin is the slave select input. Before a data transmission the SS pin is connected to ground if
the single slave module is used. Once the byte is transferred from the SPI transmit register to the shift register, the SPTE control
bit is set indicating that another byte can be written to the SPI transmit data register. The byte of data shifting a bit at time on the
MISO pin synchronized with the master serial clock. The master shift register is then automatically transferred to the master SPI
receive data register if it is empty. The SPRF control bit is set indicating that the SPI receive register is full and waiting to be read.

V. SPI DATA TRANSMISSION
SPI interface allows to transmit and receive data simultaneously on two lines (MOSI and MISO). Clock polarity (CPOL) and
clock phase (CPHA) are the main parameters that define a clock format to be used by the SPI bus. Depending on CPOL
parameter, SPI clock may be inverted or non-inverted. When clock polarity is set to 1, the idle state for SCLK is high [4].CPHA
parameter is used to shift the sampling phase. If CPHA=0 the data are sampled on the leading (first) clock edge. If CPHA=1 the
data are sampled on the trailing (second) clock edge, regardless of whether that clock edge is rising or falling.

Clock polarity = 0, Clock phase = 0

Figure 2: Clock polarity = 0, Clock phase = 0

The data must be available before the first clock signal rising. The clock idle state is zero. The data on MISO and MOSI lines
must be stable while the clock is high and can be changed when the clock is low. The data is captured on the clock's low-to-high
transition and propagated on high-to-low clock transition.
Clock polarity = 0, Clock phase = 1

Figure 3: Clock polarity = 0, Clock phase = 1

The first clock signal rising can be used to prepare the data. The clock idle state is zero. The data on MISO and MOSI lines must
be stable while the clock is low and can be changed when the clock is high. The data is captured on the clock's high-to-low
transition and propagated on low-to-high clock transition.
Clock polarity = 1, Clock phase = 0

© 2015 IJEDR | Volume 3, Issue 3 | ISSN: 2321-9939

IJEDR1503092 International Journal of Engineering Development and Research (www.ijedr.org) 3

Figure 4: Clock polarity = 1, Clock phase = 0

 The data must be available before the first clock signal falling. The clock idle state is one. The data on MISO and MOSI lines
must be stable while the clock is low and can be changed when the clock is high. The data is captured on the clock's high-to-low
transition and propagated on low-to-high clock transition.

Clock polarity = 1, Clock phase = 1

Figure 5: Clock polarity = 1, Clock phase = 1

The first clock signal falling can be used to prepare the data. The clock idle state is one. The data on MISO and MOSI lines must
be stable while the clock is high and can be changed when the clock is low. The data is captured on the clock's low-to-high
transition and propagated on high-to-low clock transition.

VI. SIMULATION AND RESULTS
The data transmission from master to slave and slave to master has been synthesized using the Xilinx ISE design
suite 13.3.1 and the simulation results are shown in figure respectively.

© 2015 IJEDR | Volume 3, Issue 3 | ISSN: 2321-9939

IJEDR1503092 International Journal of Engineering Development and Research (www.ijedr.org) 4

Figure 6: SPI RTL Schematic of Top Module

Figure 7: SPI Master to Slave Data Transmission

© 2015 IJEDR | Volume 3, Issue 3 | ISSN: 2321-9939

IJEDR1503092 International Journal of Engineering Development and Research (www.ijedr.org) 5

Figure7: SPI Slave to Master Data Transmission

VII. CONCLUSION
The SPI Master and Slave has been implemented using verilog HDL and Xilinx ISE 13.3.1 was used for simulation. The basis of
this paper is the focus on data transmission between master and slave modules. We have verified the data in slave device same as
the data in the master device and various possible cases of clock polarity and clock phase are verified. Further, we have also done
functional verification.

REFERENCES
[1] Motorola Inc., “SPI Block Guide V03.06,” February 2003
[2] Quartus II Handbook version 9.0 volume 5: Embedded Peripherals. Altera SPI core interval time core chapter in
volume 5 of the Quartus II.
[3] Digital DNA from Motorola, “SPI Tutorial introduction”.
[4] F.Leens, “An Introduction to I2C and SPI Protocols,”IEEE Instrumentation & Measurement Magazine, pp. 8-13, February
2009.
[5] A.K. Oudjida et al, “FPGA Implementation of I2C and SPI Protocols: A Comparative Study”. Proceedings of the 16th edition
of the IEEE International Conference on Electronics Circuits and Systems ICECS, pp. 507 -510, ISBN: 978-1-4244-5091-
6,December 13-16 2009, Yasmine Hammamet, Tunisia.
[6] Bhaskar. J, A Verilog HDL Primer, Publisher: Syndicate Publications.

