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Abstract - In this paper we are checking the equivalence of any given text of strings is represented by a straight line 

program (SLP) with model text. For a given SLP-compressed Aleshin type automata D of size n and height h representing 

m patterns of total length N, we present an O (n2 log N)-size representation of Aho-Corasick automaton which recognizes 

all occurrences of the patterns in D in amortized O (h + m) running time per character. We also propose an algorithm to 

construct this compressed Aho-Corasick automaton in O (n3 logn log N) time and O (n2 log N) space. In a special case 

where D represents only a single pattern, we present an O (n log N)-size representation of the Morris-Pratt automaton 

which permits us to find all occurrences of the pattern in amortized O (h) running time per character, and  to construct 

this representation in O (n3 logn log N) time  with O (n2 log N) working space. 

 

Index Terms - Aho-Corasick automata, straight line program, Morris-Pratt automaton, Aleshin Type Automata. 
________________________________________________________________________________________________________ 

I. INTRODUCTION 

In this paper, we introduce a new notion of the pattern is given in compressed form while the text is given in uncompressed 

form. In particular, we are interested in a setting where a set of patterns is given in compressed form in advance, and the text is 

given in a streaming fashion. A typical application would be an SDI (Selective Dissemination of Information) service. 

A straight line program (SLP) is a context-free grammar in the Chomsky normal form which generates a single string. It is well 

known that outputs of various grammar-based compression algorithms (e.g., [3,4]), as well as those of dictionary-based 

compression algorithms (e.g., [5-8]), can be regarded as, or be quickly transformed to, SLPs [9]. We use an SLP to represent a 

dictionary consisting of m patterns, by designating m variables in the SLP as the start symbols. The classical pattern matching 

problem is, given two strings called the pattern and the text, to find all occurrences of the pattern within the text. The full 

compressed pattern matching problem [1] is the pattern matching problem where both the pattern and the text are given in 

compressed form. A variant of this problem where the text is given in compressed form while the pattern is given in uncompressed 

form, has been extensively studied for various compression format [2] .Given a compressed automata D represented as an SLP of 

size n, we consider how to efficiently construct an AhoCorasick (AC) automaton [10] for D. Since the total length N of patterns in 

D can be as large as Θ (2n ), a naïve method which decompresses D takes exponential time and space in the worst case. By 

exploiting some combinatorial properties on SLP-compressed automata, to present a compressed representation of AC automaton 

which requires O (n2 log N ) space. Hence, our representation is useful when the patterns in the automata are compressible. This 

representation allows us to recognize all occurrences of the patterns in D in amortized O (h + m) running time per character, where 

h is the height of the derivation tree of the SLP representing D, and m is the number of patterns in D. We also show how to 

construct our compressed Aleshin type AC automata in O (n3 logn log N ) time using O (n2 log N ) space. The size of our 

compressed Aleshin type AC automaton is independent of the number m of patterns represented by the compressed text D, and 

hence it requires O (n2 log N ) space even if D represents only a single pattern. We also present a more space-efficient solution to 

the case of a single pattern, namely, a compressed representation of Morris-Pratt (MP) automaton [11] which requires O (n log N ) 

space. The compressed MP automaton permits us to perform pattern matching on a compressed pattern and an uncompressed text 

in amortized O (h) time per character, and can be constructed in O (n3 logn log N ) time using O (n2 log N ). 

 

II. PRELIMINARIES 

Strings 

Let Σ be a finite alphabet. An element of Σ ∗ is called a string. The length of a string w is denoted by |w |. The empty string ε is 

a string of length 0, namely, |ε| = 0. Strings x, y and z are, respectively, called a prefix, substring, and suffix of the string w = xyz. 

Let Prefix(w ) denote the set of prefixes of w . A prefix (suffix) of a string w is said to be proper if it is shorter than w . The i -th 

character of a string w is denoted by w [i], where 1 ≤ i ≤ |w |. For a string w and two integers i , j with 1 ≤ i ≤ j ≤ |w |, let w [i .. j] 

denote the substring of w that begins at position i and ends at position j , that is, w[i.. j ] = w [i ] · · · w [ j]. 

For any strings p, t ∈ Σ + , let Occ(p, t ) denote the set of all positions of t at which an occurrence of P begins, that is, Occ(p, t ) 

= {k | k ∈ [1..|t | − |p| + 1], p = t [k..k + |p| − 1]}. 
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Periods and runs of strings 

A period of a string w is a positive integer p such that w [i] = [i + p] for every i ∈ [1..|w | − p]. A run in a string w is an interval 

[i .. j ] with 1 ≤ i ≤ j ≤ |w | such that:  

 

(i) the smallest period p of w [i.. j] satisfies 2 p ≤ j − i + 1.  

(ii)the interval can be extended neither to the left nor the right, without violating the above condition, that is, w [i − 1]  w[i 

+ p − 1] and w [ j − p + 1]  w [ j + 1], provided that respective symbols exist. 

Construction of 4-state Aleshin type automaton, A(S)  

The constructed Aleshin type automaton S, [A(S)] over the alphabet X= {0, 1} with the set of internal states Q ={a, b, c, d}. 

The state transition function φ and the output function ψ of A(S) are defined as follows:  (a,0)=d,  (a,1)=b, 

 

 (b,0)=b,  (b,1)=c, (c,0)=d, (c,1)=d, (d,0)=a, (d,1)=a ; ψ(a,0)=1, ψ(a,1)=0, ψ(b,0)=1, ψ(b,1)=0, ψ(c,0)=0, ψ(c,1)=1, 

ψ(d,0)=0, ψ(d,1)=1. 

 

 
Fig. 1 Aleshin type automaton 

Theorem 1 

Let p and q be two periods of a string x. If p + q − gcd(p, q) ≤ |x|, then gcd(p, q) is also a period of x. 

Theorem 2 

The periods of any x ∈ Σ+ are partitioned into O (log |x|)-arithmetic progressions.  

Aho-Corasick automata  

The Aho-Corasick automaton (AC automaton for short) [10] is a finite state machine which simultaneously recognizes all 

occurrences of multiple patterns in a single pass through a text. The AC automaton for a dictionary Π consists of three functions: 

goto, failure, and output.  

The g-trie for a dictionary Π is a trie representing Π . There is a natural one-to-one correspondence between the states (nodes) of 

the g-trie and the pattern prefixes. State q is said to represent string u if the path from the initial state 0 to q spells out u . For 

example, the initial state 0 represents the empty string ε and the state 4 represents the string abab . Let Q denote the set of states of 

the g-trie, and let ⊥ be an auxiliary state not in Q . The g-trie defines the goto function g so that every edge q to r labeled c implies g 

(q, c) = r . In addition, we set g (⊥, a) = 0 for all a ∈ Σ . The output function λ and the failure function f are defined as follows. 

 
 Fig. 2 On the left the Aho-Corasick automaton for Π = {aba, ababb, abca, bb} is displayed, where the circles denote 

states, the solid and the broken arrows represent the goto and the failure functions, respectively, and the underlined strings 

adjacent to states mean the outputs from them. On the right the g-trie for Π is shown 

Definition 1 

Let q be any state. Suppose q represents string u . Then λ(q) is the set of patterns in Π that are suffixes of u. 

Definition 2 

Let q be any state with q  0. Suppose q represents string u . Then state f (q) represents the longest proper suffix of u that is also 

a prefix of some pattern. 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org


© 2015 IJEDR | Volume 3, Issue 4 | ISSN: 2321-9939 

IJEDR1504074 International Journal of Engineering Development and Research (www.ijedr.org) 468 

 

Let δ : Q × Σ → Q be the state-transition function defined by:  

  

δ (q, a) =    g (q,a), if g (q, a) is defined 

                  δ ( f (q), a), otherwise.  

 

We extend δ to the domain Q × Σ* in the standard way. 

Theorem 3  [10] 

For any string w ∈ Σ*, δ (0, w) is the state that represents the longest suffix of w that is also a prefix of some pattern. The 

number of goto and failure transitions required in computing δ (0, w ) is at most 2|w |. 

We say that a state is branching if it is of out-degree ≥ 2, and terminating if it represents some pattern. We say that a state is 

explicit if it is branching or terminating, and implicit otherwise. 

Theorem 4 

The number of explicit states is at most 2|Π |. 

Straight line programs 

A straight-line program (SLP) is a set of assignments D = {X 1 → expr1 , X 2 → expr2 , . . . , Xn → exprn }, where each Xi is a 

variable and each expr i is an expression, where expri = a (a ∈ Σ ), or expri = Xl(i) Xr(i) (i >l (i ), r (i )). It is essentially a context-free 

grammar in the Chomsky normal form, that derives a single string. Let val(Xi ) denote the string derived from variable Xi . To ease 

notation, we sometimes identify val(Xi ) with Xi , and denote |val(Xi )| as |Xi |, and val(Xi )[b..e] as Xi [b..e] for any interval [b..e]. 

An SLP D represents the string s = val(Xn ). The size of D, denoted by |D|, is the number n of assignments in D. Note that N = |s| 

can be as large as Θ (2n).  

Our model of computation is the word RAM: We shall assume that the computer word size is at least log 2N , and hence, 

standard operations on values representing lengths and positions of string s can be manipulated in constant time. Space 

complexities will be determined by the number of computer words (not bits).  

We will use the following result. 

Theorem 5 [15] 

We can pre-process an SLP D = {Xi → expri }n=1 in O (n3 ) time and O (n2 ) space to answer the following query in O (n2 ) 

time: given two variables Xi and X j (1 ≤ i , j ≤ n), compute the length of the longest common prefix of val(Xi ) and val(X j ). 

The derivation tree of an SLP D = {Xi → expri }n=1 is a labeled ordered binary tree where each internal node is labeled with a 

non-terminal variable in {X1 , . . . , Xn }, and each leaf is labeled with a terminal character in Σ . The root node has label Xn . Let 

height(Xi ) denote the height of derivation tree of Xi , and let height(D) = height(Xn ).  

For each variable Xi we store the length |Xi | of the string derived by Xi , which can be computed in a total of O (n) time using 

O (n) space by a simple dynamic programming algorithm.  

The sorted index of an SLP D = {Xi → expri }n=1 is the permutation σ of [1..n] such that the strings val(Xσ (1) ), . . . , val(Xσ (n) ) 

are arranged in the lexicographical order. 

Theorem 6  

The sorted index σ of an SLP of size n can be computed in O (n3 logn) time using O (n2 ) space. 

Proof 

We compute the length l of the longest common prefix of two variables Xi and X j using Theorem5. Then, comparing val(Xi ) 

and val(X j ) reduces to comparing the (l + 1)-th leaves of the derivation trees of Xi and X j , which can be done in  

The derivation tree of SLP D = {X 1 → a, X 2 → b, X 3 → X 1 X 2 , X 4 → X 1 X 3 , X 5 → X 3 X 4 , X 6 → X 4 X 5 , X 7 → X 6 X 

5 }, representing string val(X 7 ) = aababaababaab.  

 

O (n) time using the length of the string that each variable derives (note that the case where = min{|Xi |, |X j |} is easier).  Hence 

the sorted index σ can be computed in O (n3 + n3 logn) = O (n3 logn) time using any O (n logn)-time comparison sort.  

 

A variable X with Xi → Xl Xr ∈ D is said to stab an interval [b..e] ⊆ [1..|Xi |] if b ∈ [1..|Xl |] and e ∈ [|Xl | + 1..|Xi |]. For any p 

∈ Σ + , let Occ(p, Xi ) denote Occ(p, val(Xi )), and let Occξ (p, Xi ) be the set of positions α ∈ Occ(p, Xi ) such that the interval [α 

..α + |p| − 1] is stabbed by Xi. 

Theorem 7 [15] 

Occξ (p, Xi) forms an arithmetic progression. We will also use the following result: 

Theorem 8 [16] 

Given an SLP D = {Xi → expri }n
i=1 that represents a string T of length N , it is possible to pre-process D in O (n) time using O 

(n) space, so that any substring T [i ..i + m − 1] of length m of T can be computed in O (log N + m) time. 

III. COMPRESSED ALESHIN TYPE AC AUTOMATON 

First, we show that the image set of each lattice-valued regular langauge is always a finite set of l. 
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AC Automaton  

In this section, we consider the AC automaton for ΠD = Π (D,n) = {val(Xi ) | i ∈ [1..n]}, not for Π (D,m) . Independently of m ∈ 

[1..n], we use the goto and the failure functions of this automaton, and adjust the output function appropriately for Π (D,m). 

Compact representation of g-trie 

For a compact representation of the g-trie, we can adopt the so-called path compaction technique like the suffix trees [17]. The 

compact g-trie for D = {Xi → expri }n=1 is the path-compacted trie obtained from the g-trie for {val(Xi ) | i ∈ [1..n]} by removing 

the implicit states, where every edge e from q to r (let q and r be explicit states representing strings  u and uv , respectively) is 

labeled by a, Xi _ such that a = v [1], Xi [1..|uv |] = uv and Xi stabs [1..|uv |]. The next lemma directly follows from Theorem4. 

Theorem 9 

There are at most 2n states in the compact g-trie for D of size n. displays the AC automaton and the compact g-trie for ΠD 

where D is identical to the example SLP An implicit state q*on edge e = (q, r ) can be specified by an integer h ≥ 1 such that q* 

represents the string Xi [1..|u| +h]   and Xi stabs [1..|u| + h], where q represents string u and e is labeled by (a, Xi ). 

Theorem 10 

 An O(n)-space compact g-trie can be constructed in O (n3 logn) time and O (n2) space so that for any state q and any character 

c , g (q, c) can be determined in O (log N ) time. 

Proof 

We can compute in O (n3 logn) time the sorted index σ of D and an array storing the longest common prefix length of             

val (Xσ (i)) and val(Xσ (i+1) ) for all i ∈ [1..n − 1]. Thus the compact g-trie can be constructed in O (n3 logn) time. When q is an 

explicit state, we can find the edge e = (q, r ) labeled by( c, Xi ) for some variable Xi in O (log |Σ |) time, if such e exists, and we 

thus determine g (q, c) in O (log |Σ |) time, if such e exists, and we thus determine g (q, c) in O (log |Σ |) time.. When q is an implicit 

state on edge e specified by integer h, we can compute the (h + 1)th character in the string spelled out by e in O (log N ) time by 

using the technique of Theorem8, and then compare it with c to determine g (q, c).  

 

Thus, we can represent the goto function compactly. A naive implementation of the failure function, however, requires 

exponential space. In the following two subsections, we describe how to represent the failure and the output functions in 

polynomial space with respect to n. By combining those results, we will finally show our main theorem in Section Main result on 

compressed Aleshin type AC automata. 

Compact representation of failure function 

As stated in the previous subsection we can represent any implicit state of the compact g-trie as a pair of an edge e = (q, r ) and 

an integer h. Here, we show another representation of states in the compact g-trie: A reference-pair of explicit/implicit state q is 

defined to be (Xi , h)such that q represents string Xi [1..h] and Xi stabs [1..h]. 

Theorem 11 

A mutual conversion between the two state representations can be performed in O (logn) time using some data structure of size 

O (n2 ). 

Proof 

Let q be any state that represents string u . Suppose q is an explicit state. If q is terminating, let Xi be the variable corresponding 

to q, and otherwise, let Xi be the variable such that some out-going edge e from q is labeled by ( a, Xi ). Then, (Xi , |u |)gives a 

reference-pairs of q. Suppose q* is an implicit state on edge e = (q, r ) specified by integer h, and e is labeled by (a, Xi ). Then,( Xi , 

|u| +h) gives a reference pairs of q. Conversely, suppose we are given a reference-pair (Xi , h) of some state q* . Then, it is possible 

to determine in O (logn) time the explicit state q that is the nearest ancestor of q*, by using a simple binary search over the lengths 

of strings represented by the explicit states on the path from the initial state to the terminating state for Xi .  

Let Prefix(D) denote the set of prefixes of val(Xi ) for all variables Xi inD. For any variable Xi → Xl Xr ∈ D, an f-interval of Xi 

is a maximal element in the set {[b..e] | 1 < b ≤ |Xl | < e ≤ |Xi |, Xi [b..e] ∈ Prefix(D)} with respect to the set inclusion relation ⊆. 

The f-interval sequence of Xi , denoted F (Xi ), is defined to be the sequence {[bk ..ek ]}s =1 of all f-intervals of Xi arranged in the 

increasing order of b k . By definition e1 , . . . , es are also arranged in the increasing order of ek The set of f-interval sequences 

represents the failure function f as follows: 

Theorem 12 

Let q be any state. Suppose q represents string Xi [1..h]. If h = 1, then f (q) is the initial state. Suppose h ≥ 2. Choose Xi so that 

Xi stabs [1..h]. Let {[bk ..ek ]}s
k=1 be the f-interval sequence of Xi , and let k_ ∈ [1..s] be the smallest integer such that h ∈ [b k_ 

..ek_ ]. Then, the state f (s) represents the string Xi [bk_ ..h]. If no such k_ exist, then f (q) represents the string Xr [1..h − |Xl |]  

where Xi → Xl Xr ∈ D.  

A naive way of encoding the f-interval sequence {[bk ..ek ]}s =1 of a variable Xi is to have a linear-list of triples of bk , ek , 

X j _ such that Xi [bk ..ek ] = X j [1..ek − bk + 1] and X j stabs [1..ek − bk + 1]. The list length s can, however, be exponential with 

respect to n. 
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Example 2 

Consider the SLP D = {X1 → a} ∪ {Xi → Xi−1 Xi−1 }n−3 ∪ {Xn−2 → b, Xn−1 → Xn−2 Xn−3 , Xn → Xn−1 Xn−3 }. Then there are 2n−4 

− 1 f-intervals of Xn .  

 

Fortunately, we can prove by making use of cyclic structures on f-intervals.  

For any variable Xi → Xl Xr ∈ D and any f-interval [b..e] ∈ F (Xi ), if there is a run [α ..β ] with period p such that α ≤ b < e ≤ β 

and e −b + 1 ≥ 2 p, we say that the run [α..β ] subsumes the f-interval [b..e]. Note that if such run exists, p is the smallest period of 

Xi [b..e] and the run is unique with respect to [b..e]. If a run [α ..β ] subsumes two distinct f-intervals [b..e] and [b_ ..e_ ] such that 

Xi [b..e] = Xi [b_ ..e_ ] and b < b_ ≤ |Xl | − p , [α ..β ] is said to be f-rich. 

Theorem 13 

For any variable Xi → Xl Xr in D, there is at most one f-rich run. 

Proof 

The existence of an f-rich run [α ..β ] with period p implies that u = Xi [|Xl | − p + 1..|Xl |] = Xi [|Xl | + 1..|Xl | + p]. Also, from 

the definition of f-rich run, there must exist  

an f-interval [b..e] such that [b..e] ⊇ [|X l | − p + 1..|Xl | + p ].  

Assume on the contrary that there is another f-rich run [α’..β’ ] with period p’ (w.l.o.g. assume p’ < p ). Since Xi [|Xl | − p’ + 

1..|X l |] = Xi [|Xl | + 1..|Xl | + p’ ], p – p’ is a period of u . Since any interval contained in [b..e] cannot be an f-interval, at least one 

of α’ < b ≤ |X l | − p + 1 or |Xl | + p ≤ e < β’ must hold. In either case,  u has a period p’ depicts the situation when |X l | + p ≤ e < β’ 

is assumed). It follows from the periodicity lemma that gcd(p – p’ , p’ ) is a period of u , which means that p is not the smallest 

period of Xi [α ..β ], a contradiction.  

Lemma 14 

Let Xi → Xl Xr be any variable in D. Let [b..e] and [b_ ..e_ ] be the first and the last f-intervals subsumed by a run [α ..β ] with 

period p , respectively. For any d with p ≤ d < d + p < b’ − b, [b + d..e’’] ∈ F (Xi ) ⇐⇒ [b + d + p..e’’ + p] ∈ F (Xi ). 

Lemma 15 

Let Xi → Xl Xr  be any variable in D. Let [b..e] and [b’ ..e’] be the first and the last f-intervals subsumed by a run [α ..β ] with 

period p, respectively. For any d with 0 ≤ d < d + p < b’ − b, |{[b’’ ..e’’] [b’’ ..e’’ ] ∈ F (Xi ), b + d ≤ b’’ <b +d + p}| ≤ n. 

Proof 

Assume on the contrary that |{[b’’ ..e’’ ] | [b’’ ..e’’ ] ∈ F (Xi ), b + d ≤ b’’ <b + d + p}| > n. By the pigeon hole principle, there 

exists X j such that Xi [b1 ..e1 ] and Xi [b2 ..e2 ] are prefixes of X j , where [b1 ..e1 ], [b2 ..e2 ] ∈ F (Xi ) with b + d ≤ b1 < b2 < b + d + 

p. Also, recall that from the definition of f-rich run, [|Xl | − p + 1..|Xl | + p] is covered by an f-interval, and the length of any f-

interval subsumed by the f-rich run is longer than p . Consider u = Xi [b1 ..b2 + p − 1] and observe that p and b2 − b1 (< p) are both 

periods of u . Then, it follows from the periodicity lemma that gcd(b2 − b1 , p) is a period of u which contradicts that p is the 

smallest period of the f-rich run.   

 

In light of Theorem 14 we consider storing cyclic f-intervals in a different way from the naive list of F (Xi ). Since information 

of f-intervals for one period is enough to compute failure function for any state within the cyclic part, it can be stored in an O (n)-

size list Lc (Xi ) by Theorem 15. Let L(Xi ) denote the list storing F (Xi ) other than cyclic f-intervals. Note that L(Xi ) includes 

O(n) f-intervals subsumed by the f-rich run but not in the cyclic part. 

Theorem16 

For any Xi → Xl Xr ∈ D, the size of L(Xi ) is bounded by O (n log N). 

Proof 

Let X j be any variable and let c0 , . . . , cs (c0 < · · · < cs ) be the positions of val(Xl ) at which a suffix of val(Xl ) overlaps with a 

prefix of val(X j ). We note that each ck is a candidate for the beginning position of an f-interval of Xi . It follows from Theorem2 

that c0 , . . . , cs can be partitioned into at most O (log |Xl |) disjoint segments such that each segment forms an arithmetic 

progression.  

Let 0 ≤ k < k’ ≤ s be integers such that C = c k , . . . , ck’ is represented by one arithmetic progression. Let d be the step of C , 

i.e., c k’ = c k’ −1 + d = · · · = ck + (k’ − k)d. We show that if more than two elements of C are related to the beginning positions of 

f-intervals of Xi , the f-rich run subsumes all those f-intervals but the last one. Suppose that for some k ≤ h1 < h2 < h3 ≤ k’ , ch1 , ch2 , 

ch3 ∈ C are corresponding to f-intervals, namely, [ch1 ..e], [ch2 ..e’ ], [c h3 ..e’’] ∈ F (Xi ) 

 with e − ch1 + 1 = LCP(Xi [ch1 ..|Xi |], X j ),  

e’ -c h2 + 1 = LCP(Xi [ch2 ..|Xi |], X j ) and  

e’’ − c h3 + 1 = LCP(Xi [ch3 ..|Xi |], X j ).  

It is clear that d is the smallest period of Xi [ch1 ..|Xl |] and |Xl | − ch1 + 1 > 2d. Let β be the largest position of val(Xi ) such that 

Xi [ch1 ..β ] has period d, i.e., there is a run [α , β ] with α ≤ ch1 < |Xl | < β . Let β_ be the largest position of val(X j ) such that X j 

[1..β_ ] has period d.  

• If β < e’’ . Note that this happens only when β − c h3 + 1 = β’ . Consequently, 

 LCP(Xi [ch1 ..|Xi |], X j ) = LCP(Xi [ch2 ..|Xi |], X j ) =β’ .  
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• If β ≥ e’’. It is clear that β’ < e’’ − c h2 + 1, since otherwise [c h3 ..e’’ ] would be contained in [c h2 ..e’ ]. Then, LCP(Xi [ch1 ..|Xi 

|], X j ) = LCP(Xi [ch2 ..|Xi |], X j ) = β’ .  

 

In either case Xi [ch1 ..e] = Xi [ch2 ..e’] = X j [1..β’ ] holds, which means that except for at most one f-interval [c..e] satisfying β 

< e the others are all subsumed by the f-rich run [α..β ].  

Since in each segment there are at most two f-intervals which are not subsumed by the f-rich run, the number of such f-intervals 

can be bounded by O (log N ). Considering every variable X j , we can bound the size of L(Xi ) by O (n log N ).   

 

In light of Theorems 14 and 16 we get the next lemma. 

Theorem 17 

An O (n2 log N )-size representation of the failure function f can be constructed in O (n3 logn log N ) time using O (n2 log N ) 

space so that given reference-pair of any state q, a reference-pair of the state f (q) can be computed in O (log n) time. 

Proof 

In [18] a compressed overlap table OV for an SLP of size n such that for any pair of  variables X and Y , OV (X , Y ) contains 

O (log N )-size representation of overlaps between suffixes of val(X ) and prefixes of val(Y ). They showed how to compute OV in 

O (n3 logn log N ) time. Actually, their algorithm can be extended to compute L(Xi ) and Lc (Xi ) for all variable Xi ∈ D in O (n3 

logn log N ) time From Lemma 14 and  Lemma 16, the total size for L(Xi ) and Lc (Xi ) for all variable Xi ∈ D is bounded by O (n2 

log N ). Using L(Xi ) and Lc (Xi ), we can compute f (q) for any state q = Xi , h_ in O (logn) time. If q is not in cyclic part of f-

intervals, we conduct binary search on L(Xi ), otherwise on Lc (Xi ) with proper offset. It takes O (log(n log N )) = O (logn) time. 

Compact representation of output function 

Theorem 18 

An O (nm)-size representation of the output function λ can be computed in O (n3 logn) time and O (n2 ) space so that given any 

state q = (Xi , h)we can compute λ(q) in O (height(Xi ) + m) time. 

Proof 

First we construct a tree with nodes Π ∪ {ε} such that for any p ∈ Π (D,m) the parent of p is the longest element of Π( D,m) ∪ {ε} 

which is also a suffix of p . The tree can be constructed in O (n3 logn) time in a similar way to the construction of the compact g-

trie. Note that λ(q) can be computed by detecting the longest member p of Π (D,m) which is also a suffix of Xi [1..h], and outputting 

all patterns on the path from p to the root of the tree. In addition, we compute in O (n3 ) time a table of size O (nm) such that for any 

pair of p ∈ Π (D,m) and variable X j the table has Occξ (p, X j ) in a form of one arithmetic progression.  

 

Now we show how to compute the longest member of Π (D,m) which is also a suffix of Xi [1..h]. We search for it in descending 

order of pattern length. We use three variables p’ , i’ and h’ , which are initially set to the longest pattern in Π (D,m) , i and h, 

respectively. We omit the case when |p’ | = 1 or |p’ | > h since it is trivial. If the end position of Xi [1..h] is contained in X r (i’ ) and 

|p’ | > h’− |Xl(i’) |, using arithmetic progression of Occξ (p’ , Xi’ ), we can check if p’ is a suffix of Xi [1..h] or not in constant time 

by simple arithmetic operations. If the above condition does not hold, we traverse the derivation tree of X i’ toward the end position 

of Xi [1..h] updating i’ and h’ properly until meeting the above situation, where h’ is updated to be the length of the overlapped 

string between X i’ and Xi [1..h].  

It is not difficult to see that the total time is O (height(Xi ) + m). 

Main result on compressed Aleshin type AC automata 

Lemma1 

Given any DSLP D, m_ of size n that represents dictionary Π (D,m) of total length N , it is possible to build, in O (n3 logn log N ) 

time and O (n2 log N ) space, an O (n2 log N )-size compressed automaton that recognizes all occurrences of patterns in Π (D,m) 

within an arbitrary string with O (height(D) + m) amortized running time per character. 

Proof 

By  Theorem 10, an O (n)-size representation of the g-trie can be obtained in O (n3 logn) time and O (n2 ) space. By  Theorem 

17, an O (n2 log N )-size representation of the failure function can be obtained in O (n3 logn log N ) time and O (n2 log N ) space. 

By  Theorem 18, an O (nm)-size representation of the output function can be obtained in O (n3 logn) time and O (n2 ) space. We 

also build an O (n2 )-size data structure to conduct the bidirectional conversion between a state on the g-trie and its reference-pair 

(Theorem 11). Thus, the space occupancy of our compressed automaton is O (n2 log N ) which is dominated by the representation 

of the failure function. While pattern matching, the computations on the compact g-trie, the failure function and the output function 

require O (log N ), O (logn) and O (height(Xi ) + m) amortized time per character, respectively. Therefore we get the statement.   

 

We note that when m = 1, the output function of Theorem 18 is not needed since it is enough to report the occurrence of Xn 

when we reach there. Hence, the following Corollary holds. 
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IV. CONCLUSION  

For an SLP D of size n representing string T of length N, it is possible to build, in O (n3 logn log N ) time and O (n2 log N ) 

space, an O (n2 log N )-size compressed Aleshin type automaton that recognizes all occurrences of T within an arbitrary string with 

O (log N ) amortized running time per character. 
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