Analysis and Design of a Siphon Aqueduct

${ }^{1}$ Kollipara Parvathi Manjusha, ${ }^{2}$ G.Lalitha, ${ }^{3}$ B.Naresh
${ }^{1}$ Assitant Professor, ${ }^{2}$ Undergraduate Student, ${ }^{3}$ Undergraduate Student
Department of Civil Engineering, Dhanekula Institute of Engineering \& Technology, Vijayawada - 521139, Andhra Pradesh

Abstract

An aqueduct structure is a complex structure as compared to bridge, as it takes canal water across stream and canal traffic over the trough. The water tightness and free expansions - contractions of trough, canal water load as well as traffic load on the trough involves complex load combinations, for which the superstructure and substructure of it is required to be planned and designed. The object of this research is to develop an optimized hydraulic design, by considering various theories which are applicable. In this research we are considering an aqueduct which is located in Puligadda and it is designed as a syphon aqueduct for reducing the damages during floods and to avoid flood intensity across the delta areas which provide irrigation water to fertile soil in Diviseema. For this design the analysis is done by using STAAD.Pro software (trough side walls).

Keywords - Aqueduct, trough, total energy line(TEL),head $\operatorname{loss}(H L)$

I. INTRODUCTION

We are considering puligadda Aqueduct near Avanigada in Krishna dt, Andhra Pradesh.Aqueduct cum-Road bridge constructed in 1934 near puligada.
Government of Madras member for Irrigation and Revenue Sir.A.Y.G Campbell laid the foundation stone for the Aqueduct cumBridge in 1934 and cannon Dunkerley and Co-Limited completed it.
In syphon Aqueduct, the HFL of the drain is much higher above the canal bed, and water runs under siphonic action through the Aqueduct barrels.

Fig(1). Siphon Aqueduct

II. LITERATURE REVIEW

> In the quotation given below, Vitruvius - a Roman architect from the 1 c BC who left a treatise called 'de architecture' makes reference to the Venter (the lowest part of the siphon) and the geniculus (vertical bend), but he also introduced the term ' colliviaria' a term which has caused much discussion (see Hodge1983 and Kessener2001). One of its function could have been to let the air-bubbles escape from the pipes.
$>$ Frontinus is another classical author who wrote about aqueducts. Around 100 AD he was supervising the aqueducts of Rome and wrote the book 'de aqua duct'. Remarkably he did not make any reference to siphons although in his time they were already applied all over the Greek and Roman world and even in and around
$>$ A.T. Hodge - Hodge1983: Siphons in Roman aqueducts (in: PBSR Vol 51 (1983) pag 174)
$>$ M.Lewis-1999: Vitruvius and the Greek aqueducts (in: PBSR vol 67 (1999) p145ff
$>$ H.P.M. Kessener -Kessener2001: Vitruvius and the conveyance of water (in: Bulletin Antieke beschaving vol 76 (2001) pag 139 ff

III. Experimental Methodology

Collection of data required for the design of Puligadda Syphon Aqueduct .

1. Discharge of river and canal .
2. HFL \& BL of drain and FSL of canal.
3. Traffic volume of road.
4. Width of the river canal.

Design of Puligadda Aqueduct as Puligadda Syphon Aqueduct
1.Design of drainage water way
2. Design of canal waterway
3. Design of contraction transition
4. Design of expansion transition
5. Design of the trough

IV. Characteristics of flows

Uniform flow in canal and aqueduct trough ($\mathrm{dy} / \mathrm{dx}=0, \mathrm{dV} / \mathrm{dx}=0, \mathrm{dQ} / \mathrm{dx}=0$) Where
y is a depth, V is the velocity of flow and Q is the discharge. Non-uniform flow in upstream and downstream transition zone of aqueduct . ($\mathrm{dy} / \mathrm{dx} \neq 0$, $d V / d x \neq 0, d Q / d x=0)$. Steady flow for canal and aqueduct $(d Q / d x=0)$. For Steady non-uniform flow, that is, GVF in upstream transition zone,

$$
\begin{equation*}
\text { Energy losses }=\mathrm{HL}_{1}=\mathrm{K} 1\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{1}{ }^{2}\right) / 2 \mathrm{~g} \text {. } \tag{1}
\end{equation*}
$$

Where K1 ranges from 0.1 to 0.3 ; and 0.2 is considered for aqueduct design.
For Steady non-uniform flow, that is, GVF in downstream transition zone,

$$
\begin{equation*}
\text { Energy losses }=\mathrm{HL}_{3}=\mathrm{K}_{2}\left(\mathrm{~V}_{2}^{2}-\mathrm{V}_{3}{ }^{2}\right) / 2 \mathrm{~g} \tag{2}
\end{equation*}
$$

Where K2 ranges from 0.2 to 0.4 ; and 0.3 is considered for aqueduct design.
Steady-uniform flow in aqueduct trough, energy losses shall be.
Energy losses $=\mathrm{HL}_{2}=\mathrm{n}^{2} \mathrm{~V}_{2}{ }^{2} \mathrm{~L} / \mathrm{R}^{4 / 3} \quad---------\mathrm{Eq}(3)$
Where n is Manning's coefficient $\& \mathrm{R}=$ hydraulic mean depth.
1.Continuity equation :
Q1 = Q2 = Q3 ----------Eq(4)
2.Energy equation (Bernoulli's equation) :
$\mathrm{E}=\mathrm{Z} 1+\mathrm{y} 1+\mathrm{V} 12 / 2 \mathrm{~g}=\mathrm{Z} 2+\mathrm{y} 2+\mathrm{V} 22 / 2 \mathrm{~g}+$ Losses $=\mathrm{Z} 3+\mathrm{y} 3+\mathrm{V} 32 / 2 \mathrm{~g}+$ Losses $---------\mathrm{Eq}(5)$ Where E denotes total energy,

Z denotes potential head,
y denotes depth and V denotes velocity

V. DESIGN OF VENT WAY

Designed discharge of old aqueduct $\quad=4500 \mathrm{~m}^{3} / \mathrm{sec}$
Maximum flood observed in $1977=6000 \mathrm{~m}^{3} / \mathrm{sec}$
We are designing for discharge $\quad=7050 \mathrm{~m}^{3} / \mathrm{sec}$
Bed Level of the drain $\quad=10 \mathrm{~m}$
Maximum Flood Level $=15.5 \mathrm{~m}$

Waterway design

Length of the clear waterway $=\mathrm{Q} / \mathrm{DV}=7050 /(6.5 \times 3.25)=334 \mathrm{~m}$
velocity in the river is $3 \mathrm{~m} / \mathrm{sec}$, but at the siphon barrel the velocity should be limiting $3.25 \mathrm{~m} / \mathrm{sec}$ because to reduce the silt deposit in the barrel.
depth of the water $\mathrm{D}=$ bottom level of the trough $-8.5 \mathrm{~m}=15-8.5=6.5 \mathrm{~m}$
Provide clear water way of 9.25 m of 36 spans are separated by 1.25 m width piers
Total length of clear water way $\quad=9.25 \times 36=333 \mathrm{~m}$
Length occupied by piers
$=35 \times 1.25=43.75 \mathrm{~m}$
Total length of the water way $\quad=376.75 \mathrm{~m}=377 \mathrm{~m}$
Center to center length of piers $\quad=9.25+1.25 / 2+1.25 / 2=10.5 \mathrm{~m}$
hence provide 36 spans of length 10.5 m

VI. Design of RCC road way

Provide the width of road way as 5.5 m with footpath $=0.5 \mathrm{~m}$.(intermediate lane)
Hence provide 36 spans of 10.5 m span.
Total load $\quad=9.82 \mathrm{KN} / \mathrm{m}^{2}$

Moments

$M_{x}=\quad{ }_{x} \times w \times\left(1_{x}\right)^{2}=0.086 \times 9.82 \times 5.62^{2}=26.67 \mathrm{KN}-\mathrm{m}$
$M_{y}=\quad y \times w \times\left(l_{x}\right)^{2}=0.0526 \times 9.82 \times 5.62^{2}=16.31 \mathrm{KN}-\mathrm{m}$
Reinforcement in edge strip is provide 8mm diameter bars @ $250 \mathrm{mmc} / \mathrm{c}$

VII. ANALYSIS OF TROUGH SIDEWALLS

total load on side walls $=566.568 \mathrm{KN}$

Reactions calculation

Fixed end moments $\mathrm{M}_{\mathrm{a}} \& \mathrm{M}_{\mathrm{b}}=\mathrm{wl}^{2} / 12=495.67 \mathrm{KN}-\mathrm{m}$

VIII DESIGN OF TROUGH

Design of side walls

Water pressure $=16.2 \mathrm{KN} / \mathrm{m}^{2}$
Bending moment due to water pressure $=9.72 \mathrm{KN}-\mathrm{m}$
$\mathrm{A}_{\mathrm{st}}=1894.68 \mathrm{~mm}^{2}$
Hence provide 20 mm bars $170 \mathrm{~mm} \mathrm{c} / \mathrm{c}$

IX. DESIGN OF TROUGH SLAB

Live load on RCC road way $=6.93 \mathrm{KN} / \mathrm{m}^{2}$
Self-weight of road way $=2.88 \mathrm{KN} / \mathrm{m}^{2}$
Self-weight of trough side walls $=0.5 \times 24=12 \mathrm{KN} / \mathrm{m}^{2}$
Assume trough thickness of 500 mm
Therefore self-weight of trough slab $=0.5 \times 24=12 \mathrm{KN} / \mathrm{m}^{2}$
Water load $=$ depth \times density of water

$$
=1.8 \times 9.81=17.66 \mathrm{KN} / \mathrm{m}^{2}
$$

Moment calculation

$\mathrm{M}=\mathrm{wl} 2 / 10$

$$
\mathrm{M}=(51.47 \times 10.5 \times 10.5) / 10=567.46 \mathrm{KN}-\mathrm{m}
$$

Effective depth $=500-50=450 \mathrm{~mm}$

Reinforcement calculation

$\mathrm{Mu}=0.87$ fy \times Ast $\times \mathrm{d}(1-(\mathrm{fy} \times$ Ast $) /($ fck $\times b d))$

```
    567.457\times106 = 0.87\times415\timesAst }\times450(1-(415\timesAst)/( 20\times1000\times450) )
    567.457\times106 =162472.5 Ast-7.49 Ast2
                Ast=4375 mm2
```


Transverse reinforcement

Let us provide 32 mm
No of bars are 5.44(say) 6bars.
Spacing $=170 \mathrm{~mm}(\mathrm{c} / \mathrm{c})$
Hence provide 6 bars @170mmc/c

Longitudinal reinforcement

Let us provide 25 mm

No of bars $=\quad=8.9$ (say) 10 bars.
Spacing $=\quad=100 \mathrm{~mm}$
Hence provide 10 bars @ $100 \mathrm{mmc} / \mathrm{c}$

X FIXING OF LEVELS

The Afflux is calculated by using Unwin's inverted formula.

$$
\mathrm{h}=\left(1+\mathrm{f}_{1}+\mathrm{f}_{2}\right.
$$

here

$$
\begin{aligned}
& \mathrm{f} 1=0.505 \\
& \mathrm{f} 2=\mathrm{a}(1+0.3 \mathrm{~b} / \mathrm{R}) \\
& \mathrm{a}=0.003 \\
& \mathrm{~b}=0.10
\end{aligned}
$$

The afflux required on U/S to push the maximum flood discharge is 0.82 m .

$$
\begin{aligned}
& =15.5+0.82 \\
& =16.32 \mathrm{~m}
\end{aligned}
$$

MFL@U/S=MFL@D/S+ Afflux

Maximum Flood Level on upstream side is 16.32 m

Fig(2) Fixing of Levels

XI HEAD LOSS CALCULATIONS IN CANAL TROUGH

Fig(3) Transistion zone

Normal canal section

total e level at AA $\quad=17.3+0.035=17.335 \mathrm{~m}$
Section at the upside transition
Eddy loss due to change in velocity

$$
=\quad=\quad=0.016
$$

TEL at B-B $\quad=17.349 \mathrm{~m}$
Section at the entrance of trough
TEC at $\mathrm{CC}=17.296 \mathrm{~m}$
Mannings formula :

$$
V=R^{2 / 3} S^{1 / 2} \quad----------\quad E q(6)
$$

T.E.L @ Exit $=17.296-0.126=17.17 \mathrm{~m}$
T.E.L at end w.r.t to end section of trough= 17.146 m

Provide 12 m width of Reinforced Concrete trough with a velocity of water in the trough in $1.5 \mathrm{~m} / \mathrm{sec}$. Hence loss of Energy is reduced.

XII PIER DESIGN

Section Properties

$$
\begin{aligned}
& \text { cross section area of pier } \quad=12.5 \times 1.25=15.625 \mathrm{~m}^{2} \\
& \mathrm{I}_{\mathrm{xx}}=203.45 \mathrm{~m}^{2} \\
& \mathrm{I}_{\mathrm{yy}}=.035 \mathrm{~m}^{2} \\
& \mathrm{z}=3.19 \mathrm{~m}^{2}
\end{aligned}
$$

s.no	description of element	force(KN)	moment(KN-m)	$\operatorname{stress}(\mathrm{KN} / \mathrm{m} 2)$

	Vertical	horizontal	along bridge axis	along pier axis		
1	Deadload	3320.9			212.54	
2	buoyancy effect	-1015.625		65		
3	liveload on one span	400.25		180.11		82.077
4	longitudinal force from super structure \& live load (i) traction		80.05	520		
lbraking (ii)frictional		144.23	937.51	163		
5	water current		29	125.67	293.89	
6	wind force		90.33	587.13	3.86	

Table(1).
Details of Forces on

Pier

XIII
DESIGN
OF
ABUTME
NT
provide abutment of $\quad 1.5 \mathrm{~m}$ top width and 2 m bottom width the face of
abutment is vertical in water pressure and slopes to 1:2 on earth supporting side

$$
\begin{aligned}
& \mathrm{w} 1=1.5 \times 6.5 \times 1 \times 24=234 \mathrm{KN} \\
& \mathrm{w} 2=1 / 2 \times 0.5 \times 6.5 \times 24 \times 1=39 \mathrm{KN} \\
& \mathrm{w} 3=641.825 \mathrm{KN} \\
& \mathrm{w} 4=1 / 2 \times 0.5 \times 6.5 \times 19=30.875 \mathrm{KN} \\
& \text { Total vertical forces }=945.7 \mathrm{KN}
\end{aligned}
$$

Horizontal force

Pressure $\mathrm{p}=\mathrm{k} \gamma \mathrm{H}=23 \mathrm{KN} / \mathrm{m}^{2}$
Total pressure $=253.77 \mathrm{KN}$
Table(2). Details of Moments on Abutment

S.NO	WEIGHT	LEVERARM	MOMENT
w_{1}	234	0.75	175.5
w_{2}	39	1.67	65
w_{3}	641.325	1	641.325
w_{4}	30.875	1.83	56.60
p_{1}	224.25	$6.25 / 2$	728.8
p_{2}	29.53	$6.25 / 3$	63.98

XIV. DESIGN OF WELL FOUNDATION

Table(3) Properties of soil

S.no	Property	symbol	Value
1	Gravel \%	\$	0
2	Sand \%		10\%
3	Fine silt/clay		65\%
4	Liquid limit \%	$\mathbf{W}_{\text {L }}$	47\%
5	Plastic limit \%	$\mathbf{W}_{\text {p }}$	23\%
6	Plasticity index	IP	24\%
7	Soil caly	CI	Inorganic clay of medium plasticity
8	Specific gravity	G	2.33
9	Optimum moisture content	OMK	30\%
10	Maximum dry density	M.D.D	$\begin{aligned} & 1.63 \mathrm{gm} / \mathrm{cc} \\ = & 15.99 \mathrm{KN} / \mathrm{m}^{2} \end{aligned}$
11	Cohesion	C	$\begin{gathered} 14.458 \mathrm{t} / \mathrm{m}^{2} \\ =141.8 \mathrm{KN} / \mathrm{m}^{2} \end{gathered}$
12	$\begin{aligned} & \text { Angle of internal } \\ & \text { friction } \end{aligned}$	ϕ	3.65

Table.(4) Bearing Capacity Factors

Φ	N_{c}	N_{q}	N_{r}
3.65	6.12	1.18	0.002

Inclination Factor

$\mathrm{i}_{\mathrm{c}}=1-\mu / 2 \mathrm{CBL}=1-3738 / 2 \times 141.8 \times 7 \times 15=0.87$
$\mathrm{i}_{\mathrm{q}}=1-1.5 \mathrm{H} / \mathrm{V}=1-(1.5 \times 3738) / 26979.3=0.79$
$\mathrm{q}_{\mathrm{u}}=1099.43 \mathrm{KN} / \mathrm{m}^{2}$
total load on foundation $=7674.468 \mathrm{KN}$

Determination of scour depth

According to IS : 3955-1967 the depth of foundation should not be less than 1.33 times the maximum scour depth.
The depth of the base of the well below the maximum scour level is kept not less than 2 m for pier and abutments with arches and 1.2 m for pier and abutments supporting other types of structure.

Size of well:

length	$=15 \mathrm{~m}$
width	$=7 \mathrm{~m}$
height	$=11 \mathrm{~m}$
thickness of steining	$=1.5 \mathrm{~m}$

XV. DESIGN OF WELLCAP

let us provide 75 cm thick well cap
self weight of well cap $=15$ X 17 X 0.75 X $24=1890 \mathrm{KN}$
moment of inertia $\left(\mathrm{I}_{\mathrm{B}}\right) \quad=372.75 \mathrm{~m}^{4}$
horizaontal force/ Q acting in the transverse direction. $=119.33 \mathrm{KN}$
$\mathrm{M}_{\mathrm{B}} \quad=-4767.29 \mathrm{KN}-\mathrm{m}$
qmax $=81.46 \mathrm{KN} / \mathrm{m} 2$
qmin $=222 \mathrm{KN} / \mathrm{m} 2$
The maximum pressure should not be more than allowable soil pressure. the minimum pressure should not be negative.
hence safe.

Elastic analysis

$\mathrm{H} \quad>\quad \mathrm{M} / \Upsilon\left(1+\mu \mu^{1}\right)-\mu \mathrm{w}$

$$
\begin{aligned}
& =16821 / 19.76\left(1+\tan 30^{\circ} \cdot \tan 20^{\circ}\right)-\tan 30^{\circ} \times 26979 \\
& >\quad-14546
\end{aligned}
$$

as H of 3738 is greater than -14546
Hence safe.

XVI. STADDPRO ANALYSIS \& DESIGN OF SIDE WALLS

Fig(4) Side wall section with a length of 10.5 m

Fig(5) Reinforcement Details of Side wall section with a length of 10.5 m

BEAMNO.1DESIGNRESULTS

M20 Fe415 (Main) Fe415 (Sec.)
LENGTH: 10500.0 mm SIZE: 500.0 mm X 2300.0 mm COVER: 25.0 mm
SUMMARY OF REINF. AREA (Sq.mm)
SECTION 0.0 mm 2625.0 mm 5250.0 mm 7875.0 mm 10500.0 mm

TOP 2355.420 .000 .000 .002355 .42
REINF. (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm)
BOTTOM 0.002311 .822311 .822311 .820 .00
REINF. (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm) (Sq. mm)
SUMMARY OF PROVIDED REINF. AREA
SECTION 0.0 mm 2625.0 mm 5250.0 mm 7875.0 mm 10500.0 mm

XVII REFERENCES

[1] Indian Standard: IS 1893 (Part 1) (2002). 'Criteria for Earthquake Resistant Design of Structures. Indian Standard: IS 2912 (Part 2/Sec5) (1992).‘ Liquid Flow Measurement in Open Channels.
[2] Indian Standard: IS 2951 (Part I) (2003). 'Recommendation for Estimation of Flow of Liquids in Closed Conduits.'
[3] Indian Standard: IS 3370 (Part 1) (2009). 'Concrete Structures for Storage of Liquids-Code of Practice, General Requirement'.
[4] Indian Standard: IS 4880 (Part VII) (2000). ‘Code of Practice for Design of Tunnels Conveying Water'.
[5] Indian Standard: IS 7331; (2001). 'Code of Practice for Inspection and Maintenance of Cross Drainage Works’.
[6] Indian Standard: IS 7784 (Part 2/Sec 1) (1995). ‘Design of Cross Drainage Works - Code of Practice: Part-2 Specific Requirements, Section 1: Aqueduct'.
[7] Indian Standard: IS 7784 (Part 1) (1993). 'Design of Cross Drainage Works - Code of Practice: Part-1 General Features’.
[8] Punmia BC, Pande BBL, Ashok KJ, Arun KJ (2009). 'Irrigation and Water Power Engineering.' Laxmi Publications (P) Ltd, New Delhi.

