
© 2016 IJEDR | Volume 4, Issue 3 | ISSN: 2321-9939

IJEDR1603064 International Journal of Engineering Development and Research (www.ijedr.org) 393

Test Case Prioritization Using Regression Testing
1Supriya S. Lichade, 2Parveen Thakur,

1Research Scholar 2Assistant Proffesor,
1Computer Science and Engineering,School of Engineering and Emerging Sciences

1Baddi University of Emerging Sciences and Technologies, Baddi, India

__

Abstract - Regression testing is very important process in software testing but it is an expensive process. Regression means

the re-execution of already existing thing. While performing Regression Testing there may be insufficient resources to

perform re-execution of all test cases. Test case prioritization helps to improve the effectiveness of Regression Testing.

However, running all the test cases in the test suite is prohibitive in most cases. Optimization of test case execution time to

maximize the early fault detection rate of the original test suite will help to minimize the cost of regression testing. Because

of resource and time constraint, it becomes necessary to develop some techniques which help to minimize existing test

suites by removing redundant test cases and prioritizing them. Recently, clustering has been recognized as a primary data

mining method for knowledge discovery in spatial database. The database can be clustered in many ways depending on

the clustering algorithm employed, parameter settings used, and other factors. Multiple clustering can be combined so

that the final partitioning of data provides better clustering.

Index Terms - Regression Testing, Test case Prioritization, Clustering, Test Suites.

__

I. INTRODUCTION

What is Regression Testing?

Regression means retesting of the unchanged parts of the application. Test cases are re-executed in order to check whether

previous functionality of application is working fine and new changes have not introduced any new bugs. This test can be

performed on a new build when there is significant change in original functionality or even a single bug fix. This is the method of

verification. Verifying that the bugs are fixed and the newly added features have not created in problem in previous working

version of software. Testers perform functional testing when new build is available for verification. The intend of this test is to

verify the changes made in the existing functionality and newly added functionality. When this test is done tester should verify if

the existing functionality is working as expected and new changes have not introduced any defect in functionality that was

working before this change. Regression test should be the part of release cycle and must be considered in test estimation.

Regression testing is usually performed after verification of changes or new functionality. But this is not the case always. For the

release taking months to complete, regression tests must be incorporated in the daily test cycle. For weekly releases regression

tests can be performed when functional testing is over for the changes. Testing is an important activity to ensure software quality.

Big organizations can have several development teams with their products being tested by overloaded test teams. In such

situations, test team managers must be able to properly plan their schedules and resources.

Regression testing concentrates on finding defects after a major code change has occurred. Specifically, it exposes software

regressions or old bugs that have reappeared. It is an expensive testing process that has been estimated to account for almost half

of the cost of software maintenance. Regression testing is an expensive, but important process in software testing. Unfortunately,

there may be insufficient resources to allow for the re-execution of all test cases during regression testing. In this situation, test

case prioritization techniques aim to improve the effectiveness of regression testing by ordering the test cases so that the most

beneficial are executed first. Regression testing is primarily a maintenance activity that is performed frequently to ensure the

validity of the modified software. In such cases, due to time and cost constraints, the entire test suite cannot be run. Thus, it

becomes essential to select or prioritize the tests in order to cover maximum faults in minimum time.

Why Regression Test? How Much Regression Testing?

This depends on the scope of newly added feature. If the scope of the fix or feature is large then the application area getting

affected is quite large and testing should be performed thoroughly including all the application test cases. But this can be

effectively decided when tester gets input from developer about the scope, nature and amount of change.

Types of Regression tests: As these are repetitive tests, test cases can be automated so that set of test cases can be easily executed

on new build. Regression test cases need to be selected very carefully so that in minimum set of test cases maximum functionality

is covered. These set of test cases need continuous improvements for newly added functionality. It becomes very difficult when

the application scope is very huge and there are continuous increments or patches to the system. In such cases selective tests

needs to be executed in order to save testing cost and time. These selective test cases are picked based on the enhancements done

to the system and parts where it can affect the most.

What We Do in Regression Test?

 Rerunning the previously conducted tests

 Comparing current results with previously executed test results

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 3 | ISSN: 2321-9939

IJEDR1603064 International Journal of Engineering Development and Research (www.ijedr.org) 394

This is a continuous process performed at various stages throughout the software testing life cycle. A best practice is to conduct

regression test after the sanity or smoke testing and at the end of functional testing for a short release.

To conduct effective testing, regression test plan should to be created. This plan should outline the regression testing strategy and

exit criteria. Performance testing is also the part of this test to make sure system performance is not affected due to the changes

made in the system components.

Regression testing is a type of software testing that verifies software that was previously developed and tested still performs

correctly after it was changed or interfaced with other software. Changes may include software

enhancements, patches configuration changes, etc. During regression testing new software bugs or regressions may be uncovered.

Sometimes a software change impact analysis is performed to determine what areas could be affected by the proposed changes.

These areas may include functional and non-functional areas of the system. One of the main reasons for regression testing is to

determine whether a change in one part of the software affects other parts of the software. Common methods of regression testing

include rerunning previously completed tests and checking whether program behavior has changed and whether previously fixed

faults have re-emerged. Regression testing can be performed to test a system efficiently by systematically selecting the

appropriate minimum set of tests needed to adequately cover a particular change. In Contrast with non-regression testing (usually

validation-test for a new issue), which aims to verify whether, after introducing or updating a given software application, the

change has the intended effect.

USES

Regression testing can be used not only for testing the correctness of a program, but often also for tracking the quality of its

output. For instance, in the design of a compiler, regression testing could track the code size, and the time it takes to compile and

execute the test suite cases.

"Also as a consequence of the introduction of new bugs, program maintenance requires far more system testing per statement

written than any other programming. Theoretically, after each fix one must run the entire batch of test cases previously run

against the system, to ensure that it has not been damaged in an obscure way. In practice, such regression testing must indeed

approximate this theoretical idea, and it is very costly. Regression tests can be broadly categorized as functional tests or unit tests.

Functional tests exercise the complete program with various inputs. Unit tests exercise individual functions, subroutines, or object

methods. Both functional testing tools and unit testing tools tend to be third-party products that are not part of the compiler suite,

and both tend to be automated. A functional test may be a scripted series of program inputs, possibly even involving an automated

mechanism for controlling mouse movements and clicks. A unit test may be a set of separate functions within the code itself, or a

driver layer that links to the code without altering the code being tested. Regression testing is the process of testing changes to

computer programs to make sure that the older programming still works with the new changes. Regression testing is a normal part

of the program development process and, in larger companies, is done by code testing specialists. Test department coders develop

code test scenarios and exercises that will test new units of code after they have been written. These test cases form what becomes

the test bucket. Before a new version of a software product is released, the old test cases are run against the new version to make

sure that all the old capabilities still work. The reason they might not work is because changing or adding new code to a program

can easily introduce errors into code that is not intended to be changed.

II. LITERATURE REVIVIEW

In this paper R.Krishnamoorthi and S.A.Sahaaya Arul Mary[1] proposed a new test case prioritization technique using

Genetic Algorithm (GA).This experiment analyzes the genetic algorithm with regard to effectiveness and time overhead by

utilizing structurally-based criterion to prioritize test cases. An Average Percentage of Faults Detected (APFD) metric is used to

determine the effectiveness of the new test case orderings.Experimental analysis demonstrates that their approach can have This

paper identifies and evaluates the challenges associated with time-aware prioritization.

Thillaikarasin Muthusamy and Dr. Seetharaman[2] proposed a algorithm which is based on analysis of the percentage of test

cases performed to find the faults and on APFD metric’s results. Outcomes demonstrate that their algorithms can also achieve

better execution. For

instance, in the first project if only 75% test cases could be melt down due to resource constraint, random strategy could find

more or less 66% faults; while our proposed algorithm detects about 88% faults. They had also validated their results with the aid

of standard APFD metric.

Xiang Chen, Jian Xia and Pengfei[3] developed the algorithm to reduce the cost of regression testing, they can optimize test

case execution schedule to maximize the early fault detection rate of the original test suite. Different from previous research, they

use classification algorithms to guide the schedule process based on code change information and running result analysis.

Suresh Nageswaran[4] presents a new approach to the estimation of software testing efforts based on Use Case Points [UCP] as

a fundamental project estimation measure. The acceptance test plan is then prepared with the use cases from the requirement

documents as input.

 In this paper, Ryan Carlson, Hyunsook Do and Anne Denton[5] consider a clustering approach to help improve test case

prioritization. We implemented new prioritization techniques that incorporate a clustering approach and utilize code coverage,

code complexity, and history data on real faults.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 3 | ISSN: 2321-9939

IJEDR1603064 International Journal of Engineering Development and Research (www.ijedr.org) 395

Due to the resource and time constraints, it becomes necessary to develop techniques to minimize existing test suites by

eliminating redundant test cases and prioritizing them so

Manika Tyagi and Sona Malhotra[6] proposes a 3-phase approach to solve test case prioritization. In the first phase, we are

removing redundant test cases by simple matrix operation. In the second phase, test cases are selected from the test suite such that

selected test cases represent the minimal set which covers all faults and also at the minimum execution time. For this phase, we

are using multi objective particle swarm optimization (MOPSO) which optimizes fault coverage and execution time. In the third

phase, we allocate priority to test cases obtained from the second phase. Priority is obtained by calculating the ratio of fault

coverage to the execution time of test cases.

In this research paper Chintala Abhishek, vwginati Pavan Kumar, Harish Vitta and Praveen Rajan Srivastava[7] focuses on

finding a method which gives a measure of the effort to be spent on the testing phase. This paper provides effort estimates during

pre-coding and post-coding phases using neural network to predict more accurately. The proposed effort estimation models for

pre coding phase based on use case point and soft computing technique- neural network has been applied to improve upon the

accuracy. The method that has been followed and the metric proposed have an advantage that it produces accurate results. For the

post coding effort estimation the proposed model estimated the effort based on and used neural network to improve upon accuracy

and the results have been found to show that the proposed estimation is in synchronization with the traditional effort estimation

models.

 K.Mumtaz and Dr. K. Duraiswamy[8] proposed a novel density based k-means clustering algorithm to overcome the

drawbacks of DBSCAN and kmeans clustering algorithms. The result will be an improved version of kmeans clustering

algorithm. This algorithm will perform better than DBSCAN while handling clusters of circularly distributed data points and

slightly overlapped clusters. Dbkmeans clustering algorithm in different application areas such as medical image segmentation

and medical data mining.

Eduardo Aranha and Paulo Borba[9] presents an estimation model for test execution complexity based on the size and

execution complexity measured from test specifications written in a controlled natural language. Existing estimation models in the

literature are based on system specifications and they estimate the effort required to perform more activities than test execution,

such as defining and implementing tests.

Afnizanfaizal Abdullah, Safaai Deris and Mohd Saberi Mohamad[10] developed a new hybrid optimization method called

Hybrid Evolutionary Firefly Algorithm (HEFA) is proposed. The method combines the standard Firefly Algorithm (FA) with the

evolutionary operations of Differential Evolution (DE) method to improve the searching accuracy and information sharing among

the fireflies. The HEFA method is used to estimate the parameters in a complex and nonlinear biological model to address its

effectiveness in high dimensional and nonlinear problem. This is important to ensure that the speed performance will not be

affected by the problem complexity. Secondly, the direction of the fireflies can be added to the method so that the firefly

movements can be improved substantially. Lastly, the proposed method should be tested to estimate the parameters in more

complex problems such as noise and identifiability.

Dr. Arvinder Kaur and Divya Bhatt[11] proposed the HPSO is a combination of Particle Swarm Optimization (PSO) technique

and Genetic Algorithms (GA), to widen the search space for the solution. The Genetic Algorithm (GA) operators provides

optimized way to perform prioritization in regression testing and on blending it with Particle Swarm Optimization (PSO)

technique makes it effective and provides fast solution. In this paper they presented, the hybrid approach to solve prioritization in

regression testing. The execution of algorithm has shown the effectiveness of the technique proposed. The automation of

algorithm has provided solid base for its effectiveness.

Bharti Suri and Shweta Singhal[12] presents the analysis of the regression test prioritization technique to reorder test suites in

time constraint environment along with the sample runs on various programs. Our analysis concluded that the ACO finds better

orderings at higher values of the time constraint (TC). The correctness of the technique has also been recorded to be near optimal

at an average.

Dianiel Di Nardo, Yvan Labiche[13] presents this paper as an industrial case study of

coverage-based prioritisation techniques on a real world system with real regression faults. The study evaluates four common and

different test case prioritisation techniques and examines the effects of using various coverage criteria on the fault detection rates

of the prioritised test suites. The results show that prioritisation techniques that are based on additional coverage with finer

grained coverage criteria perform significantly better in fault detection rates. The study also reveals that using modification

information does not significantly enhance fault detection rates.

III. CONCLUSION

This paper reviews various works done in the field of test case prioritization. The paper analyses the various techniques that are

used for test case prioritization. The researchers have developed various algorithm such as Genetic Algorithm, PSO, MOPSO,

ACO, DBSCAN, etc. The above information describes these algorithm in short which helps to understand the techniques of test

case prioritization. There are lot of work has been done in this area. In future the DBK-means algorithm will be introduce which

is a combination of DBSCAN and K-means for prioritizing clusters of circular shape test case.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

© 2016 IJEDR | Volume 4, Issue 3 | ISSN: 2321-9939

IJEDR1603064 International Journal of Engineering Development and Research (www.ijedr.org) 396

REFERENCES

[1] R.Krishnamoorthi and S.A.Sahaaya Arul Mary,” Regression Test Suite Prioritization using Genetic Algorithms” Department

of Computer Science and Engineering, Bharathidasan Institute of Technology, Anna University, Trichy-24, India

[2] Thillaikarasi Muthusamy and Dr. Seetharaman.K,” Effectiveness of test case prioritization technique based on Regression

Testing” Department of computer science,Annamalai University, Annamalai Nagar, Tamilnadu,India

[3] Xiang Chen, Zhaofei Tan, Jian Xia, Pengfei He“Optimizing Test Case Execution Schedule using Classifiers” School of

Computer Science and Technology, Nantong University, Nantong 226019, China

[4] Suresh Nageswaran“Test Effort Estimation Using Use Case Points”Cognizant Technology Solutions, National Games

Road,Yerwada, Pune – 411006.Maharashtra, India

[5] Ryan Carlson, Hyunsook Do, Anne Denton” A Clustering Approach to Improving Test Case

Prioritization: An Industrial Case Study”Department of Computer Science North Dakota State University Fargo, ND

[6] Manika Tyagi and Sona Malhotra“ Test Case Prioritization using Multi Objective Particle Swarm Optimizer” Department of

CSE U.I.E.T., Kurukshetra University Kurukshetra, Haryana, India

[7] Chintala Abhishek, Veginati Pavan Kumar, Harish Vitta, Praveen Ranjan Srivastava

 “Test Effort Estimation Using Neural Network” Department of Computer Science and Information System, Birla Institute of

Technology and Science, Pilani, India.

[8] K. Mumtaz1 and Dr. K. Duraiswamy 2,“A Novel Density based improved k-means Clustering Algorithm – Dbkmeans”1

Vivekanandha Institute of Information and Management Studies, Tiruchengode, India 2 KS Rangasamy College of Technology,

Tiruchengode, India

[9] Eduardo Aranha1 and Paulo Borba2“An Estimation Model for Test Execution Effort”

1Informatics Center Federal University of Pernambuco PO Box 7851, Recife, PE, Brazil 2Mobile Devices R&D Motorola

Industrial Ltda Rod SP 340 - Km 128,7A - 13820 000 Jaguariuna/SP – Brazil

[10] Afnizanfaizal Abdullah, Safaai Deris, Mohd Saberi Mohamad,and Siti Zaiton Mohd Hashim “A New Hybrid Firefly

Algorithm for Complex and Nonlinear Problem”

[11] Dr. Arvinder Kaur and Divya Bhatt “Hybrid Particle Swarm Optimization for Regression Testing” University School of

Information Technology, GGSIPU, Delhi, India

[12] Bharti Suri1 and Shweta Singhal2 “Analyzing Test Case Selection & Prioritization using ACO” 1 Assistant Professor

(Computer Science Department) University School of Information Technology Guru Gobind Singh Indraprastha University,

Dwarka, Delhi-110075, India 2 Assistant Professor (Information Technology) Jagan Institute of Management Studies 3,

Institutional Area, Sector-5, Rohini, Delhi-110085, India

[13] Daniel Di Nardo, Nadia Alshahwan, Lionel Briand 1 Yvan Labiche“Coverage-Based Test Case Prioritisation: An Industrial

Case Study” 1 Interdisciplinary Centre for Security, Reliability and Trust University of Luxembourg, Luxembourg 2 Software

Quality Engineering Laboratory Systems and Computer Engineering, Carleton University Ottawa, Ontario, Canada .

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

