
© 2017 IJEDR | Volume 5, Issue 2 | ISSN: 2321-9939

IJEDR1702076 International Journal of Engineering Development and Research (www.ijedr.org) 444

Design of dexterous VLSI architecture of FFT using

verilog
1

P.Thirunavukku arasi,
2
P.S.Stellabai,

1
Electronics and Communication Engineering,

1
Holy cross Engineering College,Tuticorin,India.

__

Abstract— Fast Fourier Transform (FFT) having a considerable impact on the performance of communication system has been a

hot topic of research for many years. Fixed point numbers are most widely involved in FFT computation, in which the accuracy is

one of the most important backlogs. Thus the floating point operation was included in butterfly unit. However, FP butterfly

architecture has the main disadvantage is slow as compared with the fixed point computation. In this paper, the floating point

fused dot product unit is used for latency reduction. Efficient Radix8 butterfly unit with FDPA was proposed. This butterfly unit

performs faster than the conventional butterfly. Finally, the performance analysis of various Radix architectures such as Radix2,

Radix4 and Radix8 are shown.Radix8 requires less number of adders and multipliers when compared to the other lower order

radices. Thus the Radix8 arch itecture was chosen, in which the FDPA algorithm was implemented. Hence the speed of FFT

computation with FP multip lier can be enhanced.

IndexTerms— Fused Dot Product Add (FDPA), Fast Fourier Transform (FFT), Floating Point multiplier (FP).

__

I. INTRO DUCTION

Traditional Fast Fourier Transform (FFT) plays a great role in various applications such as OFDM, Filtering, spectral analyzer,

Radar etc. The FFT computation is carried out by resolving the butterfly units. The major task is to include the floating point

operation in FFT architecture. There are various FFT Radix architectures are available. The number of mult ipliers and adders

required for the various Radix structures are varied. Thus the efficient Radix8 structure was chosen in which the floating po int

operation was included. But the latency rose tremendously when compared to the traditional Radix8. Hence, the enhanced

multip licat ion technique called FDPA is used. By using XILINX and ModelSim, the dexterous VLSI arch itecture of FFT was

implanted. In addit ion to that, the comparison between the various Radix architectures in terms of Timing constraints is shown.

The performance analysis gives the complete information about the proposed system speed improvement.

II. BASIC RADIX2 ARCHITECTURE

In 1965, Fast Fourier Transform was developed by J.W.COOLEY and J.W.TUCKEY. The FFT is based on decomposition and

breaking the samples into smaller units and combining them to obtain the frequency domain signal. First, here is the simplest

butterfly. It's the basic unit, consisting of just two inputs and two outputs. If N is power of 2, it can divide DFT and more. Finally,

it divide several DFT (butterfly computation) of N=2.

Figure.1 Radix2 Butterfly Diagram

Similarly, there are various butterfly units with different Radices are shown as below. In Radix4, four in puts and four outputs

are available. Let us consider N be the number of samples, then it is splitted as N/4 in Radix4 and N/8 in Radix8 respectively.

Figure.2 Radix4 Butterfly Diagram

© 2017 IJEDR | Volume 5, Issue 2 | ISSN: 2321-9939

IJEDR1702076 International Journal of Engineering Development and Research (www.ijedr.org) 445

Figure.3 Radix8 Butterfly Diagram

III. FLO ATING POINT O PERATION

Floating point number consists of exponent, mantissa and significant. IEEE 754 standards are used to represent the given input

in 32 bit floating point numbers. In which single precision is carried out, thus the 32bit output can be obtained. Floating p oint

number uses one bit for sign bit, 23 b its for mantissa and 8 bits for exponents.

Figure.4 Floating Po int Representation

The sign bit is used to indicate the nature of the number i.e, either positive or negative. If the sign bit is 0 then the

number will be positive otherwise it will be negative.

Figure. 5 Floating Point Multip lication

The mantissas are first multiplied together with an unsigned integer multiplier. The exponents are added, and the excess valu e
(exponent_offset) 2(n–1) is subtracted from the result. The sign of the output (s_out) is the XOR of the signs of the inputs (sa and

sb). After multiplication has taken place, the post-normalizer normalizes the result, if necessary, by adjusting the mantissa and

exponent of the result to ensure that the MSB of the mantissa is 1.To normalize the mantissa, the man tissa is shifted left (i.e., the

mantissa is multip lied by powers of 2). For each bit shifted left, the exponent must be reduced by 1.

IV. EXISTING SYSTEM

Fused dot product allows the difference of the product too along with addition that is useful in the implementation of complex

multip licat ion. Fused floating point operation is the fused add-subtract operation. Computing the sum and difference of two

floating point operands is used many times in DSP algorithms. Fused add -subtract unit performs the addition and subtraction on

same pair of floating point operands in parallel fashion.

© 2017 IJEDR | Volume 5, Issue 2 | ISSN: 2321-9939

IJEDR1702076 International Journal of Engineering Development and Research (www.ijedr.org) 446



Figure.6 FFT Butterfly unit with complex number

In the existing system,the Fused Dot Product Add unit is implemented in the basic FFT Radix2 arch itecture.Floating point
operation was also included in the Radix architecture.In which the latency is reduced to some extent.

V. PROPOSED SYSTEM

FDPA unit in Rdix4

Radix4 is an efficient FFT architecture, in which the number of adders and multip liers required are reduced. Four inputs and
four outputs are available.

Figure.7 Simulated output of Radix4 with FDPA

In the above figure, W1r,W1im,W2r,W2im are the real and imaginary twiddle factors. The twiddle factors are nothing but the
trignometric coefficients in FFT computation.

Figure.8 Timing constraints in Radix4 with FDPA

© 2017 IJEDR | Volume 5, Issue 2 | ISSN: 2321-9939

IJEDR1702076 International Journal of Engineering Development and Research (www.ijedr.org) 447

Figure.9 Simulated outut of Radix8 with FDPA

The above Figure.9 represents the s imulated output of Radix8 with FDPA. In which „Are‟, „Bre‟, „Cre‟, „Dre‟, „Ere‟,

„Fre‟, „Gre‟, „Hre‟, „Aim‟, „Bim‟, „Cim‟, „Dim‟, „Eim‟, „Fim‟, „Gim‟, „Him‟ are inputs. W1re, W2re, W3re, W4re, W1im, W2im,

W3im, W4im are twiddle factor which is also one of the inputs. „Aoutr‟, „Boutr‟, „Doutr‟, „Eoutr‟, „Foutr‟, „Goutr‟, „Houtr‟,

„Aoutim‟, „Boutim‟, „Doutim‟, „Eoutim‟, „Foutim‟, „Goutim‟ and „Houtim‟ represents the outputs.

Figure.10 Timing constraints in Radix8 with FDPA

VI. ACKNOWLEDGMENT

The authors would like to acknowledge the valuable suggestions from our dedicated supervisor Miss.D.Sindhuja.,M.E and our

beloved HOD sir Mr.A.Jeyamurugan.,M.E.

REFERENCES

[1] Kornerup P, “Correcting the normalization shift of redundant binary representation,” IEEE Trans, comput., vol.58, no,10,pp,1435-
1439,2001

[2] Cooley J.W and Tukey J.W, “An algorithm for the machine calculation of Complex Fourier Series ,” Math. Comput.,
vol.19,no.90,pp.297-301,1965

[3] Min J.H, Kim S.W and Swartzlander E.E, Jr, “A Floating point Fused FFT butterfly arithmetic unit with merged multiple constant
multipliers,” In Proc. 45th Asilomar Conf. Singnals, Syst,Comput,2011

[4] Parhami B, “Computer arithmetic: Algorithm and hardware,” 2nd edition,” New York ,NY,USA: Oxford Univ.Press 2010.

[5] Sohn J and swartlander E.E, Jr.(2013), “Improved architecture for a floating pointfused dot product unit,” in proc .IEEE 21 st
Symp.Comput. Arithmatic. pp.41-48.

.

