A study on assessment of groundwater quality and its suitability for drinking in Vuyyuru, Krishna(dist.), Andhra Pradesh

¹B Vijaya Lalitha, ²K Sai Tejaswini, ¹Assitant Professor, ²Student, Civil Engineering Department, Dhanekula Institute of Engineering & Technology,Ganguru,Vijayawada-521139

Abstract - Assessment of groundwater quality is necessary as it controls it's usability for drinking purpose. The study was carried out by the physico-chemical and biological analysis of groundwater to assess the suitability of groundwater for drinking. Seawater intrusion is the movement of seawater into freshwater aquifers due to natural processes or human activities. Seawater intrusion is a severe problem by decrease in the groundwater level compared to the seawater level. This draw-down also reduces the hydrostatic pressure. When this happens near an ocean coastal area, salt water from the ocean is pulled into the fresh . In Vuyyuru because of seawater intrusion most of the fertile lands are becoming wastelands and cultivation has been decreased. In the present study, groundwater samples were collected from ten sample stations in the Vuyyuru, Krishna delta region. Water samples are collected from bore wells of sample stations and are analyzed for concentrations. The concentrations of physical, chemical s parameters in groundwater samples were compared with the Bureau of Indian Standards (BIS) and World Health Organization (WHO), and observed that the water quality parameters were exceeding the permissible limits in some places of the study area. The water quality index is determined using weighted arithmetic index method. The conclusion of the analysis is that the groundwater in some places of study area is good for drinking and many areas have poor water quality. However the quality can be improved after undergoing the treatment processes

Index Terms— Groundwater quality, Vuyyuru, Water quality index

I. INTRODUCTION

It is essential to ensure proper quality of water used for drinking and irrigation purposes. Use of inferior quality of water for drinking will adversely affect human health. In developing countries like India, most of the population use untreated groundwater for various purposes, as they do not have access to good quality water. The chemical hazards are the Calcium, Magnesium, Nitrate *etc*. As the public health concern, the groundwater should be free from physical and chemical hazards. The environmental problems existing impact on groundwater quality have been the most prominent in the recent years. The Contamination of groundwater is the major environmental risk. Suitability of groundwater for drinking purposes depends upon its quality has been identified as one of the major threats to groundwater resources not only in India but throughout the world. The drinking quality of water depends on various suspended, dissolved and biological constituents. The Bureau of Indian Standards (BIS 2003) and the World Health Organization (WHO 2006) have prescribed maximum permissible limits for various dissolved ions in water used for human intake. Researchers around the world have studied the quality of water based on these standards.

II. OBJECTIVES

The main objectives of the present study are

- To identify the status of water quality in Vuyyuru with respect to physico-chemical parameters.
- To evaluate the Water Quality Index of the study area using the Weighted Arithmetic Index method.
- To assess the suitability of groundwater for drink.

III. EXPERIMENTAL PROGRAM

Groundwater is to be analyzed for various physico-chemical parameters such as pH, Electrical conductivity (EC), Total dissolved solids (TDS), Alkalinity (TA), Total hardness (TH), Sulphate (SO_4^{-2}) , Chloride (Cl), Nitrate (NO_3^{-2}) , Iron (Fe), calcium (Ca) and magnesium (Mg). B. Kotaiah and N. Kumara Swamy (water & waste water quality laboratory manual) standard methods and WQI can be computed using weighted arithmetic index method. Water quality index is the overall representation factor of quality of water. Application of Water Quality Index is a useful method in assessing the water quality of groundwater.

$$WQI = \frac{\sum_{i=1}^{n} w_i q_i}{\sum_{i=1}^{n} w_i}$$

1662

$w_i = k/S_i$

$q_i = [(v_a - v_i)/(s_i - v_i)]*100$

Where,

 w_i is a Weight age factor computed using Eq.(3.2).

V_a= Actual value of the ith water quality parameter obtained from laboratory Analysis,

 V_i = Ideal value of the ith parameter obtained from ideal values table,

 V_i for p^H is 7, for DO is 4 and for other parameters it is equivalent to zero.

IV.RESULT

The experimental results are presented in the following table, Table 4.1, 4.2, 4.3, 4.4, 4.5. Computing the values of WQI and comparing them with standard values of WQI, quality of groundwater shall be categorized for all the bore wells at different locations in the study area.

S.no	рН	EC	TDS	ТН	Mg	Cl-	No3 ⁻²	Alkalinity	DO	So 4 ⁻²	Fe	BOD	Na ⁺
1	7	1.1	54	106	20	130.4	15.23	116	5.6	86	0.4	4.8	0.012
2	7.5	1.3	54	221	112	150.3	9.8	90	4.2	112	0.25	1.6	0.0125
3	7.5	1.41	55	184	63	170.4	1.3	124	5.6	99.6	0.32	3.5	0.0124
4	7.5	1.37	56	171	67	124.8	9.5	124	4.7	154	0.4	3.2	0.123
5	7.5	1.29	55	145	54	133.3	5.6	130	6	203	0.17	1.9	0.123
6	7	1.23	53	166	48	171.6	6.3	150	5.3	214	0.2	2.2	0.125
7	7.5	1.27	55	130	37	127.8	18.2	130	4.9	114	0.12	6.3	0.123
8	7.5	1.17	53	183	56	170.7	17.6	130	5.3	107	0.19	5.6	1.17
9	7.5	1.2	53	97	49	160.6	14.7	144	4.2	138	0.16	4.9	1.2
10	7.5	1.35	56	165	52	159.6	5.7	130	4.8	203	0.09	2.7	0.125

4.1 Sampling from December 26nd –December 31st, 2016

S.no	рН	EC	TDS	тн	Mg	Cŀ	No3 ⁻²	Alkalinity	DO	S04 ⁻²	Fe	BOD	Na ⁺
1	6.9	1.16	53	108	18	72	15.23	185	5.4	89	0.31	4.7	0.011
2	7.2	1.35	53.3	225	112	214.7	9.5	322	6.5	112	0.25	1.5	0.018
3	7.3	1.41	54	190	67	225.2	11	328	6.2	100	0.32	3.5	0.011
4	7.5	1.37	54.5	175	64	113.2	9.2	176	6.5	156.2	0.31	3.4	0.016
5	7.3	1.29	54	149	56	204	5.4	285	6.9	203.5	0.18	1.9	0.018
6	6.9	1.23	52.5	169	49	73.1	6.2	227	3.5	214	0.21	2.2	0.018
7	7	1.29	54.5	142	39	231.6	18.5	350	4.2	115	0.12	6.1	0.0185
8	6.8	1.18	52.5	187	59	178	17.3	307	4.6	109	0.19	5.4	0.0118
9	6.5	1.21	52.5	101	51	199	15.1	92	7	140	0.17	4.9	0.0187
10	7	1.12	55.5	722	48	58.74	8.2	261	6	204	0.09	2.7	0.0184

4.2 Sampling from January 2nd – January 7th, 2017

S.NO	рН	EC	TDS	ТН	Mg	Cl	No3 ⁻²	Alkalinity	DO	S04 ⁻²	Fe	BOD	Na ⁺
1	6.5	1.15	52	97	22	70	14.72	188	5.4	88.12	0.27	4.8	0.0118
2	6.2	1.33	52.1	230	105	214	9	324	6.5	112	0.25	1.5	0.0118
3	6.3	1.4	53	185	56	220	11	330	6.1	98	0.28	3.3	0.0186
4	6.6	1.31	54	173	53	115	9.4	182	6.4	152	0.29	3.5	0.0184
5	6.3	1.34	54	144	48	198	5.6	297	6.7	200	0.15	2.12	0.0184
6	6.3	1.27	53	116	41	71	6.4	225	6.9	211	0.21	2.5	0.0185
7	7.6	1.21	51	151	39	215	16	354	3.6	115	0.23	5.1	0.0185
8	6.2	1.15	51.5	133	54	172	15	310	3.9	106	0.11	5.6	0.0118
9	6.3	1.26	50	182	49	200	9	92	4.5	137	0.2	4.7	0.0185
10	6.9	1.18	51	80	35	60	7	262	7.1	206	0.21	2.8	0.0184

4.3 Sampling from January 9th –January 16th, 2017

4.4 Sampling from January 17th –January 23rd,2017

	r	1	1						1				1
S.NO	рН	EC	TDS	тн	Mg	Cŀ	No ₃ -2	Alkalinity	DO	So4 ⁻²	Fe	BOD	Na ⁺
1	6.3	1.12	51.5	95	20	72	15.01	189	5.2	82.12	0.22	4.6	0.0184
2	6.2	1.31	52	225	101	217	9.9	327	6.3	110	0.21	1.3	0.0118
3	6.2	1.39	51	181	54	225	11.9	334	5.9	92	0.23	3.1	0.0184
4	6.5	1.3	52	167	51	118	9.7	187	6.1	147	0.25	3.2	0.0118
5	6.3	1.31	52	140	42	201	5.8	230	6.2	198	0.12	2.1	0.0118
6	7	1.24	51	112	37	75	6.7	227	6.4	210	0.2	2.5	0.0185
7	6.5	1.2	48	149	34	219	16.6	359	3.2	112	0.21	5.2	0.018
8	6.5	1.12	51	131	51	175	15.7	312	3.1	101	0.1	5.5	0.0184
9	6.2	1.24	46	180	42	210	9.8	99	4.4	129	0.21	4.4	0.0118
10	6.3	1.16	49	79	32	61	7.5	268	6.6	201	0.24	2.4	0.0184

S.NO	рН	EC	TDS	тн	Mg	Cl	No3 ⁻²	Alkalinity	DO	S04 ⁻²	Fe	BOD	Na ⁺
1	6.1	1.1	51	91	21	75	15.5	191	5	80	0.21	4.1	0.0184
2	6	1.3	51.5	221	99	218	10.1	329	6.1	109	0.2	1.2	0.0118
3	6.2	1.37	49.5	179	51	229	12.1	338	5.2	91	0.21	3	0.016
4	6.3	1.29	51	165	47	121	10	189	6	143	0.19	2.9	0.0185
5	6.2	1.3	51.5	138	41	207	6.1	235	6.1	195	0.1	2	0.0118
6	7.1	1.21	48	111	32	78	6.2	231	6.1	208	0.21	2.2	0.0184
7	6.5	1.19	47.5	147	31	220	15.9	364	3	110	0.2	5.1	0.1184
8	6.1	1.1	50	129	50	179	15.1	316	2.9	100	0.13	5.2	0.018
9	6	1.21	44.7	179	41	213	9.1	101	4.1	127	0.2	4.1	0.0184
10	6.1	1.17	48	74	31	69	7.2	271	6.2	200	0.21	2.1	0.011

4.5 Sampling Date from January 24th –January 31st,2017

Water Quality Parameters, WHO Standard Values, Ideal Values and Weightage Factors of Water Quality Parameters

S.no	Parameter	Max value	Min value	Standard value (S _i)	Ideal value (V _i)	Weightage factor (W _i)
1	рН	8.5	6.5	8.5	7	0.1176
2	Electrical conductivity(µmhos/cm)		1	OB	R	-
3	Total dissolved solids (mg/l)	2000	500	500	0	0.0020
4	Alkalinity (mg/l)	600	200	200	0	0.005
5	Total hardness (mg/l)	600	300	200	0	0.005
6	Sulphate (mg/l)	400	200	200	0	0.0014
7	Chloride (mg/l)	1000	250	250	0	0.0040
8	Nitrate (mg/l)	100	45	45	0	0.0222
9	Iron (mg/l)	1.0	0.3	0.3	0	3.3333
10	Calcium (mg/l)	200	600	75	0	0.0133
11	Magnesium (mg/l)	100	50	30	0	0.0333
12	DO (mg/l)	4	7	-	4	-
13	Sodium	-	-	-	0	-
14	BOD	100	30	-	-	-

Spatial variation of Water Quality Index values in Vuyyuru

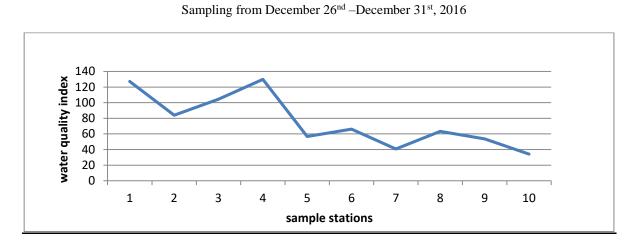
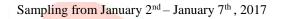
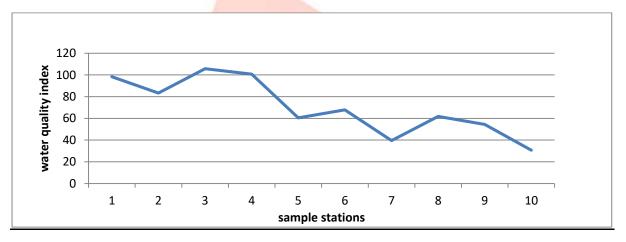
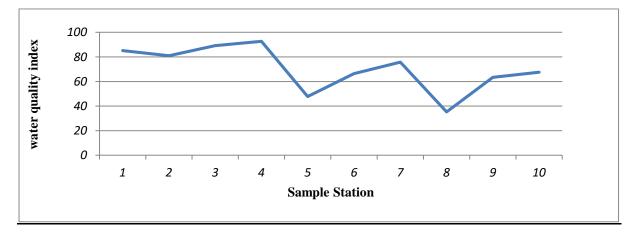



Figure 4.1 WQI Values : Sampling 1

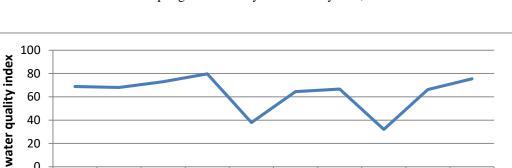
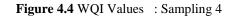
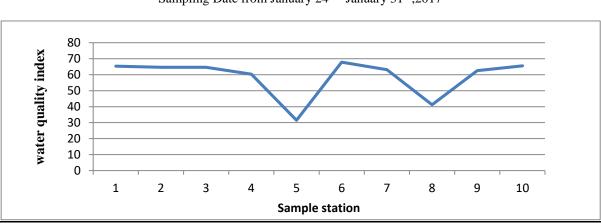


Figure 4.2 WQI Values : Sampling 2





Sampling from January 17th –January 23rd ,2017

Sample Station

Sampling Date from January 24th –January 31st ,2017

Figure 4.5 WQI Value	: Sampling station 5
----------------------	----------------------

S.NO	WQI	STATUS	SAMPLE LOCATION					
1	0-25	Excellent						
			SI.No.1 Gandigunta					
			SI.No.7 Rajesh Nagar					
2	26-50	Good	SI.No.8 Jagannadhapuram					
			SI.No.10 Mantada					
			SI.No.2 Rotary Eye Hospital					
			SI.No.4 Vuyyuru Main Center					
3	51-75	Poor	SI.No.5 KCP Colony					
U	0170	1 0 0 1	SI.No.6 Sowbhagya Nagar					
4	76-100	Very Door	SI.No.3 Eginipadu					
4	76-100	Very Poor	SI.No.9 KCP Sugar Industry					
5	Above 100	Unsuitable for Drinking	-					

Water Quality Index Values for Collected Groundwater Samples

V. Conclusions and Recommendations

- 1. Monitoring of the water quality of groundwater is done by collecting representative water samples and analysis of physicochemical characteristics of water samples at different locations of Vuyyuru.
- 2. The status of ground water quality is identified in all the sample stations of the study area with respect to physical and chemical parameters.
- 3. Water quality index is evaluated using the Weighted Arithmetic Index method for the study area.
- 4. Based on water quality index the suitability of groundwater in 10 sample stations of the study area is determined.
- 5. The quality of ground water in KCP colony (SI.NO.5), Rotary eye hospital, Vuyyuru main center, Sowbhagya nagar (SI.NO.2,4,6)is Poor.
- 6. The quality of water in KCP sugar industry (SI.NO.3), Eginipadu (SI.NO.9) is very poor.
- 7. The quality of groundwater in Gandigunta, Rajesh nagar, Jagannadhapuram, Mantada (SI.NO.1,7,8,10), is found as good.
- 8. From the above results conclusions are, some areas in the study area are having good water quality standards. Some areas are having poor and very poor quality. By treating the water in that areas, the groundwater can be used for drinking purposes. And though the study area previously used for agriculture.

VI. SCOPE FOR THE FURTHER STUDY

The investigations into groundwater contamination can be done in unexposed areas in Krishna district like in present study area. Water suitability can also be found out. By calculating Water Quality Indices further treatment can be done to the poor and very poor water quality areas by adopting the suitable treatment methodologies

VII. REFERENCES

- [1] S. Parimala renganayaki & L. Elango, Department of Geology, Anna University, Chennai, Tamil Nadu, India, "Groundwater quality assessment of suitability for drinking and irrigation purposes" Arab J Geosci, Saudi Society for Geosciences 05,jul,2013,Spinger journal
- [2] Ashifa Soomro, Altaf Ali Siyal, Muhammad Saffar Mirjat, Allah Wadhayo Gandahi, Abdul Latif Qureshi, "Seasonal Variation Of Groundwater Quality Assessment For Irrigation And Drinking Purpose In Phuleli Canal Command Area (Sindh), Pakistan", International Water Technology Journal, IWTJ Vol. 4 - No. 4, December 2014
- [3] Environmental engineering laboratory manual, Environmental and water resources engineering division, Department of civil engineering, Indian institute of technology madras, Chennai -600 036
- [4] Water Quality Assessments A Guide to Use of Biota, Sediments and Water in Environmental Monitoring Second Edition, Edited by Deborah Chapman[©] 1992, 1996 UNESCO/WHO/UNEP, ISBN 0 419 21590 5 (HB) 0 419 21600 6 (PB)
- [5] Dr. Reeta kori, expert resource person, Mrs. Suniti Parashar, SSA, under the guidance of Dr. D.D. Basu, Scientist 'e' &Sh. J.S.Kamyotra, member secretary, CPCB. Ms. Sarita Kumari, S.P.Gautam, "Guide Manual-Water and Waste water analysis
- [6] Bereau of Indian Standards (BIS) for drinking Water Specification IS: 10500, BIS, New Delhi, India, 2012
- [7] Usharani K., Umarani K., Ayyasamy P.M., Shanthi K., Lakshmana perumalsamy P,, "Physico-Chemical and Bacteriological Characteristics of Noyyal River and Ground Water Quality of Perur, India" Journal of Applied Sciences and Environmental Management, Vol. 14, No. 2, June, 2010, pp.29-35
- [8] "Shivaji Park turns into a garbage dump". *The Hindu*. 14 March 2012. Retrieved 8 June 2014.
- [9] Standard Methods for the Examination of Water and Waste Water, 1995. 20thEdition, APHA.
- [10] Standard Methods for the Examination of Water and Waste Water, 1995. 20th Edition, APHA.
- [11] Peavy, H.S., Rowe, D.R., Tchobanoglous, G. Environmental Engineering, 1985. McGraw Hill International Editions, New York.
- [12] Sawyer, C.L., McCarthy, P.L. and Parkin, G. F.,1994. Chemistry for Environmental Engineering. McGraw Hill International Editions, New York.
- [13] MetCalf and Eddy.,1991. Wastewater Engineering, Treatment, Disposal and Reuse. 3rd Edition, Tata McGraw Hill, New Delhi
- [14] N.Rajkumar, T.Subramani, L.Elango, International Journal of Environmental Sciences volume 1, no1,2010.
- [15] G. SrinivasRao, G. Nageswararao "Assessment of Groundwater quality using Water Quality Index" ARCH. ENVIRON. SCI. (2013), 7, 1-5.

1668