Mathematical Modeling For The Prediction Of Road Traffic Noise Levels In Tirupati Town

Gollamandla Sukeerth¹, Dr. N.Munilakshmi² and Chammireddy Anilkumarreddy³ ^{1,3}M.Tech Student, Department of Civil Engineering, SV University College of Engineering, SVU, Tirupati, AP, India. ²Assistant Professor, Department of Civil Engineering, SV University College of Engineering, SVU, Tirupati, AP, India.

Abstract: Noise can have negative impact on health. Hearing damage, annoyance, sleep disturbance, high blood pressure, poor cardiovascular health is all linked to community noise. Children, people with existing physical and mental illness and elderly people are most susceptible to community noise. High level of noise from sources such as busy traffic can adversely affect the health of the people living near road highways. It is therefore desirable to model a road traffic noise that predicts well the traffic noise near highways so that the people living near highways who are highly exposed by everyday traffic noise can be protected from noise exposure to some extent. Measurement of noise level (dB(A)) by noise analyzer will be conducted on road segment of Tirupati town at different locations. In the present paper a road traffic noise prediction model for Indian conditions is developed using regression analysis which is based on Microsoft Excel. Data collected has been analyzed and compared with the values predicted by analytical models. After comparison of results it was observed that Developed Model could be satisfactorily applied for Tirupati town conditions as they give accepted results with a good value.

Keywords: Traffic noise pollution, Traffic volume, octave band analyzer, Regression Analysis

I. INTRODUCTION

Sound is an acoustical energy released into the atmosphere by vibration of moving bodies. Therefore, sound is amenable to objective scientific measurement and investigation. On the other hand noise is undesirable and unwanted. Undoubtedly, noise has always been a major source of friction between individuals. Noise pollution can be defined as unwanted or offensive sounds that unreasonably intrude into our daily activities. It has many sources, most of which are associated with urban development, road, air and rail transport, industrial noise, neighborhood and recreational noise. A number of factors contribute to the problems of high noise levels including increase in the population, particularly where it leads to increasing urbanization and urban consolidation. With the increase in urbanization, it leads to the increase in the volumes of road, rail and air traffic.

Currently all the developing countries like India are facing threat due to vehicular noise pollution. Migration of people from rural to urban areas, expansion of cities, infrastructure development, population growth and urbanization are important factors resulting in motorization and consequent increase in levels of various urban noise pollution. The total urban population of India has increased considerably over the past three decades, rising from 109 million in 1971 to 160 million in1981 and then 217 million in 1991 and 285 million in 2001. This increase in population coupled with the increase in number of motor vehicles is showing alarming levels of traffic congestion, air pollution, noise pollution and road accidents. Urban traffic noise is one of the most critical types of noise and normally considered more interfering than the other types of noises.

Fast growing vehicle population in town in the recent years, has resulted in considerable increase in traffic on roads causing alarming noise pollution and air pollution. Transportation operators are major contributors to noise in modern urban areas. Noise is generated by the engine and exhaust system of vehicles by aerodynamic friction and by interaction between the vehicle and its supporting system (Example: tyre pavements and rail wheel interaction). Noise diminishes with distance from the source. The vehicle by virtue of the movement are not only polluting the atmosphere by emission of poisonous gases but also grabbing off peace from mankind by generating high noise levels that are annoying of irritating to the inhabitants to such an extent that noise pollution caused by the highway traffic has to be studied at great depth, analyzed and has to be controlled.

Noise levels increases with traffic volume in an exponential manner. In India like many other developing countries traffic noise is major continents of environmental pollution and now it has become a permanent part of urban and sub-urban life. It is very harmful to human beings. In the new millennium, for protection environmental degradation it is imperative to pay greater attention towards measuring noise pollution, enforcing regulation for noise emission limits, elimination and control noise pollution. Taking a step in this direction, Noise pollution level was measured in Tirupati town.

II. METHODOLOGY

The traffic volume study was conducted in Tirupati town at different Junctions. To measure the potential effects of traffic noise at different Junction, data on traffic volume, including types of vehicles were measured and roadside sound levels, are measured and interpreted using various models. Sound level meters, a manual hand counter, and portable measurement instruments were used to obtain the required data. Data analysis was conducted using Microsoft Excel and SLM(Sound Level Meter).

Traffic volume (composition and flow) and traffic noise were measured at three time periods per day at different Junctions. These time periods were the morning peak hour (08:00–10:00 AM), the daytime peak hour (02:00–03:00 PM), and the evening peak hour (05:00–07:00 PM). The volume and composition of traffic were measured for 60 min during each peak period.

Traffic composition was determined on the basis of the presence of two wheelers, three wheelers, four wheelers and Heavy vehicles (Buses, Lorries).Data on the geometric dimensions of road sections, as well as the number of lanes and their widths, were also measured. Sound level measurements were performed using a sound level meter (Real Time Octave Band Analyzer Model No: 407790). Traffic noise was measured using Sound Level Meter in1/3 Octave- band mode index with an A-weighted scale expressed as Leq, in decibel units at an interval of 3 seconds throughout the peak period.

III. MEASUREMENT PROCEDURE

Volume studies have been undertaken in this junction at different hours i.e., morning 8 am to 10 am, afternoon 2:00 pm to 3:00 pm and in the evening at 5:00 to 7:00 pm. For traffic volume studies manual method is being used. In this process enumerators count the number of vehicles moving over that section during the peak hours. The vehicles are categorized in to Two Wheelers (2W), Three Wheelers (3W), Four Wheelers (4W) including cars and school buses, and Heavy Vehicles (HV) including buses and lorries as the prediction of traffic noise levels at the intersection total number of vehicles per hour data is required. Since the intersection consist of four roads, the traffic volume is carried out on each side for a time interval of 15mins such that the total intersection is covered in one hour of time.

The sound level meter was placed closest to the noise source, and the microphone was positioned 70 m from the traffic light, at a height of 1.2 m above the ground level corresponding to the ear level of an individual of average height (Onnu, 2000) and 70 m was adopted with the assumption that most vehicles in the traffic stream had already reached steady speed (Burgess, 1997). Measurements were taken at a time interval of 3seconds for about 15mins on each side of the four road intersection in 1/3 octave band frequency mode and L_{eq} values also measured.

IV. MATHEMATICAL MODELS

Traffic noise prediction models are designed to facilitate planning for new roads or account for changes in traffic noise conditions. Most mathematical models adopt Leq as the most representative physical variable that quantifies noise emissions. Leq corresponds to the sound pressure of a fictions stationary noise that emits acoustic energy similar to that emitted by a non-stationary source (Cvetković et al., 1997). The equivalent continuous noise level in A-weighted decibels (dBA) is widely recognized as a stable descriptor of motor vehicle noise (Cvetković et al., 1997). Mathematical models for the prediction of traffic noise usually extract the functional relationship between noise emissions and measurable traffic and road parameters. The classical functional relationships based on data measured through semi-empirical models, typically regression analyses, are shown below.

0010				
$L_{eq} =$	$55.5 + 10.2 \log Q + 0.3P - 19.3$	$\log L/2$	Burgess (1997)	(1)
$L_{eq} = 1$	$10\log(N_c + N_m + 8N_{hv} + 88N_b) -$	+ 33.5	Fagotti and Poggi (1995)	(2)
$L_{eq} = 1$	$10 \log(N_c + 11.7 N_{hv} + 3.1 N_b) +$	- 44.3	Cvetkovic et al. (1997)	(3)
$L_{eq} = 1$	$38.8 + 15 \log Q - 10 \log L$		Josse	(4)
Where				1
L _{eq}	=Equivalent Continuous Noise Le	vel (dBA),		
Р	=Percentage of heavy vehicles (%)),		
L	= Road Width (m),)
Q	= Total number of vehicles per ho	ur,	01	
N_c	= Number of light vehicles per hou	ır,		1
N_{m}	= Number of motorcycles per hour	r,		

- N_{hv} = Number of heavy vehicles per hour,
- N_b =Number of buses per hour.

Table 1 : Traffic Parameters

DATE	Time	0	P	N _c	Nm	New	Nb
DAY-1		1		1000000	100000000000000000000000000000000000000	100000000000000000000000000000000000000	1002-00
18/02/15	8 to 9am	4039	0.297103	4027	2820	12	55
18/02/15	9 to 10am	4150	0.216867	4141	3029	9	66
18/02/15	2 to 3pm	3693	0.324939	3681	2572	12	46
18/02/15	5 to 6pm	4067	0.245881	4057	2927	10	60
18/02/15	6 to 7pm	4081	0.269542	4070	2804	11	66
DAY-2		1			7 I		-
19/02/15	8 to 9am	4122	0.291121	4110	2990	12	74
19/02/15	9 to 10am	4126	0.15	4120	2967	6	75
19/02/15	2 to 3pm	3685	0.35	3672	2560	13	48
19/02/15	5 to 6pm	4164	0.17	4157	2989	7	65
19/02/15	6 to 7pm	3984	0.28	3973	2769	11	71
DAY-3					1	1 1000	(
21/02/15	B to 9am	4173	0.19	4165	2981	8	81
21/02/15	9 to 10am	4372	0.21	4363	3101	9	70
21/02/15	2 to 3pm	3175	0.28	3100	2110		4.9
21/02/15	5 to 6pm	4323	0.16	4316	3134	7	77
21/02/15	6 to 7pm	4363	0.16	4356	3169	7	87
DAY-4		1					
22/02/15	B to 9am	2522	0.317209	2514	1618	8	61
22/02/15	9 to 10am	2847	0.175623	2842	1821	5	77
22/02/15	2 to 3pm	2712	0.184366	2707	1898	5	61
22/02/15	5 to 6pm	4243	0.141409	4237	3075	6	75
22/02/15	6 to 7pm	3765	0.185923	3758	2767	7	76

2092

Table 2 : Traffic Parameters

Annamayya Circle

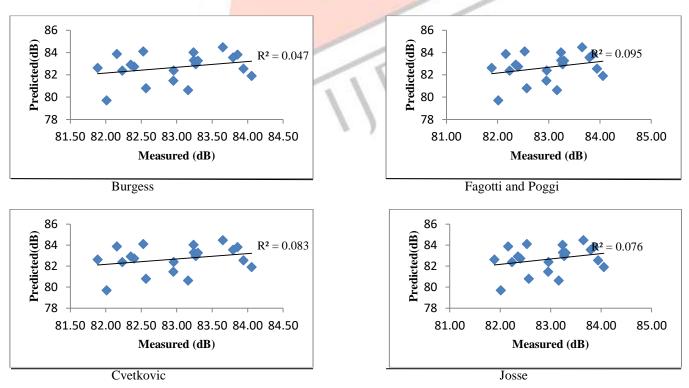
No.Days	Date	Time	Q	P	Nc	Nm	Nhy	Nb
DAY-1			· · · · · · · · · · · · · · · · · · ·					
	23/02/15	8 to 9 AM	3163	0.189693	3157	1804	6	48
	23/02/15	9 to10AM	3530	0.1983	3523	2258	7	60
	23/02/15	2 to 3 PM	2680	0.223881	2674	1540	6	13
	23/02/15	5 to 6 PM	3015	0.099502	3012	2055	3	35
9	23/02/15	6 to 7 PM	4092	0.146628	4086	2747	6	38
DAY-2					2	2	· 2	2
	24/02/15	8 to 9 AM	3066	0.163079	3061	1714	5	52
	24/02/15	9 to10AM	3419	0.116993	3415	2124	4	43
j.	24/02/15	2 to 3 PM	2599	0.153905	2595	1489	4	10
	24/02/15	5 to 6 PM	2909	0.068752	2907	1984	2	31
	24/02/15	6 to 7 PM	4170	0.143885	4164	2712	6	57
DAY-3		- (c			·			2
Ĩ	07/03/15	8 to 9 AM	3368	0.356295	3356	1816	12	59
	07/03/15	9 to10AM	4584	0.283595	4571	2411	13	83
*	07/03/15	2 to 3 PM	2840	0.56338	2824	1601	16	17
	07/03/15	5 to 6 PM	3276	0.3663	3264	2194	12	43
	07/03/15	6 to 7 PM	4252	0.211665	4243	2844	9	41
DAY-4								3
	08/03/15	8 to 9 AM	2160	0.32	2153	989	7	28
	08/03/15	9 to10AM	2858	0.17	2853	1727	5	21
	08/03/15	2 to 3 PM	2530	0.32	2522	1379	8	20
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	08/03/15	5 to 6 PM	2565	0.19	2560	1702	5	21
0	08/03/15	6 to 7 PM	3867	0.13	3862	2619	5	18

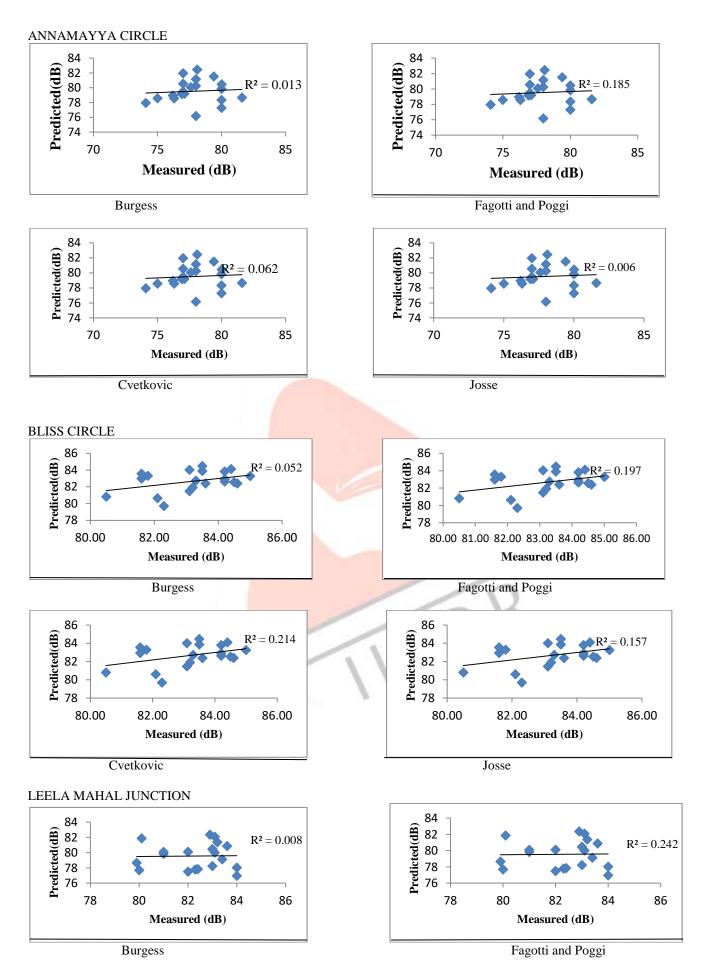
# **Table 3: Traffic Parameters**

# **Bliss Circle**

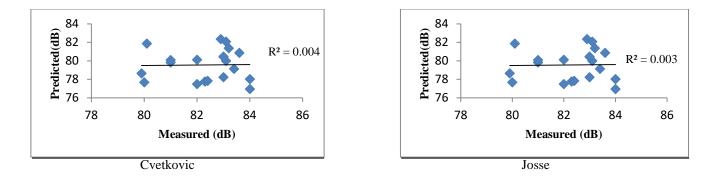
2.....

No.Days	Date	Time	Q	Р	Nc	Nm	N _{hv}	Nb
DAY1	9/3/2015	8 to 9 AM	5919	0.135158	5911	3790	8	256
	9/3/2015	9 to 10AM	6010	0.366057	5988	3608	22	251
	9/3/2015	2 to 3 PM	4540	0.528634	4516	2543	24	266
	9/3/2015	5 to 6 PM	5620	0.24911	5606	3351	14	258
	9/3/2015	6 to 7 PM	6083	0.21371	6070	3832	13	295
DAY-2					1			1
	10/3/2015	8 to 9 AM	5711	0.262651	5696	3428	15	268
	10/3/2015	9 to 10AM	5750	0.365217	5729	3425	21	297
	10/3/2015	2 to 3 PM	4850	0.391753	4831	2711	19	296
	10/3/2015	5 to 6 PM	5654	0.371418	5633	3207	21	278
	10/3/2015	6 to 7 PM	6083	0.21371	6070	3832	13	295
DAY-3								
	14/03/2015	8 to 9 AM	5103	0.293945	5088	3022	15	288
	14/03/2015	9 to 10AM	5226	0.267891	5212	2923	14	299
	14/03/2015	2 to 3 PM	4400	0.568182	4375	2382	25	268
	14/03/2015	5 to 6 PM	5594	0.375402	5573	3387	21	259
	14/03/2015	6 to 7 PM	6257	0.287678	6239	3894	18	316
DAY-4	15/03/2015	8 to 9 AM	3716	0.32	3704	2051	12	246
	15/03/2015	9 to 10AM	4060	0.39	4044	2228	16	289
	15/03/2015	2 to 3 PM	3465	0.61	3444	1681	21	291
	15/03/2015	5 to 6 PM	5212	0.21	5201	3073	11	269
	15/03/2015	6 to 7 PM	5353	0.28	5338	3172	15	288


## Table 4: Traffic Parameters


No.DAYS	DATE	TIME	Q	Р	Nc	Nm	Nhv	Nb
DAY-1	8 2	C I	1				2	
	17/03/15	8 to 9 AM	4420	0.135747	4414	2896	6	143
	17/03/15	9 to 10AM	4320	0.115741	4315	2846	5	137
	17/03/15	2 to 3 PM	3151	0	3151	1933	0	152
	17/03/15	5 to 6 PM	3706	0.269833	3696	2236	10	180
	17/03/15	6 to 7 PM	2583	0.038715	2582	1610	1	71
DAY-2		K		-				
	18/03/15	8 to 9 AM	4000	0	4000	2509	0	169
	18/03/15	9 to 10AM	3618	0	3618	2216	0	144
	18/03/15	2 to 3 PM	2832	0	2832	1607	0	173
	18/03/15	5 to 6 PM	3351	0.268577	3342	2006	9	183
	18/03/15	6 to 7 PM	2583	0.038715	2582	1610	1	71
DAY-3	2				e			
	21/03/15	8 to 9 AM	4142	0.12	4137	2696	5	124
	21/03/15	9 to 10AM	3995	0.10	3991	2557	4	145
	21/03/15	2 to 3 PM	2807	0.04	2806	1607	1	159
	21/03/15	5 to 6 PM	3411	0.21	3404	1949	7	175
	21/03/15	6 to 7 PM	4428	0.07	4425	2887	3	165
DAY-4								
	22/03/15	8 to 9 AM	2821	0.248139	2814	1573	7	140
	22/03/15	9 to 10AM	2931	0.102354	2928	1643	3	140
	22/03/15	2 to 3 PM	2511	0	2511	1345	0	147
	22/03/15	5 to 6 PM	2901	0.241296	2894	1544	7	192
	22/03/15	6 to 7 PM	3829	0.026116	3828	2310	1	169

### Leelamahal Junction


Statistical Performance Measure Of Four Mathematical Model

# BALAJI COLONY.





2095



### V. REGRESSION ANALYSIS

Excel's regression analysis tool performs linear regression analysis, which fits a line through a set of observations using the "least squares" method. Regression is used in a wide variety of applications in finance and accounting to analyze how the value of a single dependent variable is affected by the values of one or more independent variables. You can then use the regression results to predict the value of the dependent variable based on values of the independent variable(s).

The standard formula for multiple regression with two independent variables is :

Y = a + b1X1 + b2X2

Y = Predicted value of the dependent variable

a = Y-intercept

b1 = Coefficient of Weight of Materials (first independent variable)

X1 = Any value of Weight of Materials (first independent variable)

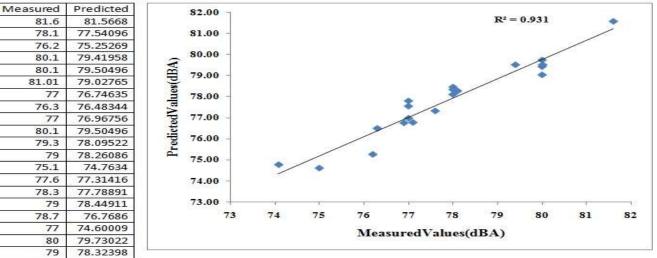
b2 = Coefficient of the second independent variable

X2 = Any value of Dollar Value of Materials (second independent variable)

As noted previously, the Y-intercept can be found in cell B17, the coefficient b1 of X1 can be found in cell B18, and the coefficient b2 of X2 can be found in cell B19.

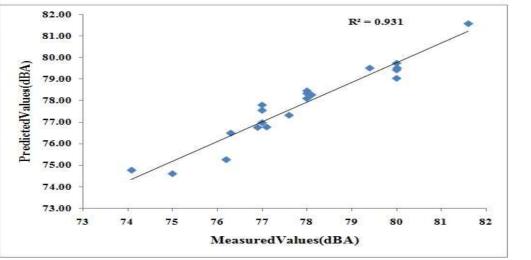
Thus, using Excel terminology, the regression formula in this example could be written as: =B17+B18*X1+B19*X2

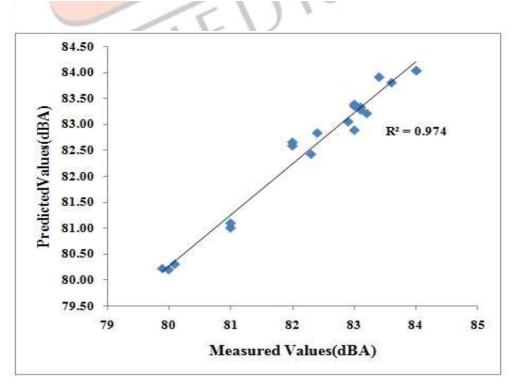
## $L_{eq} = 83.3711 - 0.28435(Q) - 0.64327(P) + 0.285084(N_c) + 0.000245(N_m) - 0.01837(N_b)$


Where	
$L_{eq}$	=Equivalent Continuous Noise Level (dBA),
Р	=Percentage of heavy vehicles (%),
Q	= Total number of vehicles per hour,
$N_c$	= Number of light vehicles per hour,
$N_{m}$	= Number of motorcycles per hour,
N _b	=Number of buses per hour.

### **Statistical Performance Measure Of Regression Analysis**

# BALAJI COLONY


Predicted	Measured						
82.40	82						
83.24	82.7						
82.23	82.35	82.00			D2.	- 0.931	
82.96	82.5	<b>81.00</b> -			K	- 0.931	-
82.53	82.1					/	
82.16	82.17	a 80.00 -					
83.94	84.18	9 79.00					
81.88	81	Lie (1947)			. /	*	
83.86	83.65	78.00		2			
82.35	81.65	N TT OC					
83.27	82.98	77.00 -		~	<b>R</b>		
83.24	83.45	- 76.00 -					
82.57	82.19	2		-			
83.79	83.67	- 75.00 -	•				
83.65	83.4	74.00 -	-				
82.01	81.44						
82.95	82.31	73.00			and the second	and the second	- 1
83.16	82.98	72	74	76	78	80	82
84.05	84.01			MeasuredV	alues(dBA)		
83.30	83.05					0	

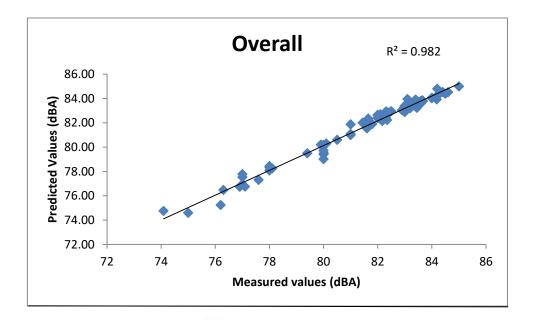

# ANNAMAYA CIRCLE



# BLISS CIRCLE

red	Predicted
1.6	81.5668
8.1	77.54096
6.2	75.25269
0.1	79.41958
0.1	79.50496
.01	79.02765
77	76.74635
6.3	76.48344
77	76.96756
0.1	79.50496
9.3	78.09522
79	78.26086
5.1	74.7634
7.6	77.31416
8.3	77.78891
79	78.44911
8.7	76.7686
77	74.60009
80	79.73022
79	78.32398






# LEELA MAHAL JUNCTION

92 92 99477

I

83	82.89477
83.2	83.21742
83	83.36154
80.1	80.30371
84	84.04402
83.6	83.81248
83.4	83.91998
82	82.66221
79.9	80.21804
84	84.04402
83.1	83.28582
83.06	83.05666
82	82.59304
81	81.00589
83.01	83.39334
81	81.09673
82.3	82.42859
82.4	82.84036
80.09	80.19752
83.1	83.33653



#### **VI.** CONCLUSIONS

The acquired consequences of near testing of a few well-known models for assurance of the intensity noise of traffic in urban areas and developed model by using regression analysis designed for this purpose encourage further research. it is apparent that the developed model by using regression analysis can recognize the dependence of the intensity noise and the effective parameters, such as intensity of traffic, width and slope of the road. Among the four existing models (i.e., Burgess, Fagotti & Poggi, Cvetkovic, Josse ) and developed model by using regression analysis , the developed model given accurate predicted Noise levels.

#### VII. REFERENCES

[1] Chammireddy AnilKumarReddy et al (2016). Verification of mathematical models for road traffic noise prediction of Tirupati town at leelamahal circle. IJSER.

[2] Gollamandla Sukeerth et al prediction of road traffic noise levels in Tirupati town using analytical models and neural networks. June 2017 | IJIRT | Volume 4 Issue 1 | ISSN: 2349-6002

[3] C. Fagotti and A. Poggi: Traffic Noise Abatment Strategies. The Analysis of Real Case not Really Effective.In: Proc. of 18th International Congress for Noise Abatment, pp. 223-233, Bologna, Italy, 1995

[4] D. Cvetković, M. Praščević1, V. Stojanović, NAISS -model for traffic noise prediction, The scientific journal Facta Universitatis, Series: Working and Living Environmental Protection Vol. 1, No 2, 1997, pp. 73 - 81

[5] F. Cirianni and G. Leonardi Environmental modeling for traffic noise in urban area, American Journal of Environmental Science, 2012, 8 (4), 345-351

[6] John O. Mason performing regression analysis using Microsoft excel International Journal of Arts and Commerce Vol. 1 No. 5 PP192-208.

[7] R. Josse: Notions d'acoustique Paris. France: Ed. Eyrolles, 1972

[8] S. Tanvir & M.M. Rahman Development of interrupted flow traffic noise prediction model for Dhaka City. 4th Annual Paper Meet and 1st Civil Engineering Congress, December 22-24, 2011, Dhaka, Bangladesh ISBN: 978-984-33-4363-5

2098