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Abstract— In this paper we introduce some result relate to Fractional Laplace transform with hyperbolic function in 

order to solve certain fractional differential equation. Mittag –Leffler function plays an important role in the fractional 

Laplace transform to find the solution of fractional order differential equations. Here we solve some problems related to 

fractional order differential equation using fractional Laplace Transform with initial conditions. 
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________________________________________________________________________________________________________ 

I. INTRODUCTION 

Fractional Calculus arises from a question posed by L’Hospital and Lebnitz in 1965. It is the generalisation of integer‐order 

calculus. Reviewing the history we find that the Fractional Calculus was more interesting topic to mathematicians for a long time 

in spite of the lack of application back ground. Upcoming years more and more researchers have paid their attention towards 

Fractional Calculus which are used in real world problems such as Viscoelastic system, dielectric polarization, electromagnetic 

waves, etc., [8, 9, 5, 7] With the great efforts of researchers there have been rapid developments on the theory of fractional 

calculus and its applications. 

The purpose of this paper is to define the Fractional Laplace Transform via Mittag‐Leffler function. Mittag‐Leffler function is 

defined and with its help the Fractional Laplace Transform is also defined. Here we derive some properties of Fractional 

Laplace Transform based on our definition which is more helpful to find the solution of fractional differential equation with the 

initial conditions. 

 

II. BASIC DEFINITIONS 

 Definition 2.1 (Riemann--Liouville definition of fractional derivative). Let the function 𝑔(𝑡) be one time    integrable. Then the 

integro--differential defines Riemann--Liouville fractional derivative [2] 

 

b𝐷𝑡
𝛼[𝑔(𝑡)] =

1

𝛤(𝑛−𝛼)
(
𝑑

𝑑𝑡
)
𝑛

∫ (
𝑡

𝑏
𝑡 − 𝜏)(𝑛−𝛼)−1𝑔(𝜏)𝑑𝜏, 𝛼 > 0 

 

This expression is known as the Riemann--Liouville definition of fractional derivative. By this definition, fractional derivative of a 

constant is non‐zero. 

 

Definition 2.2 (Modified Riemann--Liouville (RL)). To overcome the shortcoming that the fractional derivative of a constant is 

non--zero, the modification in the definition of the fractional derivative, proposed by Jumarie [5] is described as below: 

b𝐷𝑡
𝛼[𝑔(𝑡)] =

{
 
 

 
 

1

𝛤(−𝛼)
∫ (
𝑡

𝑏
𝑡 − 𝜏)−𝛼−1𝑓(𝜏)𝑑𝜏, 𝛼 < 0

1

𝛤(1−𝛼)

𝑑

𝑑𝑥
∫ (
𝑡

𝑏
𝑡 − 𝜏)−𝛼[𝑓(𝜏) − 𝑓(𝑏)]𝑑𝜏,

(𝑓(𝛼−𝑚)(𝑥))𝑚, 𝑚 ≤ 𝛼 < 𝑚 + 1

  0 < 𝛼 < 1  

 

Definition 2.3 (Mittag‐Leffler Function). The one--parameter of Mittag--Leffler function [3], denoted  

   by 𝐸𝛼(𝑧) , is defined by 

                                              𝐸𝛼(𝑧) = ∑
𝑧𝑘

𝛤(1 + 𝛼𝑘)

∞ 

𝑘=0

, 𝑧 ∈ ℂ, 𝑅𝑒(𝛼) > 0                                 (1) 

2.1 MITTAG‐LEFFLER FUNCTION FOR FRACTIONAL DERIVATIVE 

   Mittag Leffler function is defined in the form of an infinite series with one parameter [3] 

 

𝐸𝛽(𝛼𝑥
𝛽) = 1 +

𝛼𝑥𝛽

𝛤(1 + 𝛽)
+

𝛼2𝑥2𝛽

𝛤(1 + 2𝛽)
+

𝛼3𝑥3𝛽

𝛤(1 + 3𝛽)
+ ⋯∞ 
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Definition 2.4 (Fractional Derivative of Mittag‐Leffler Function). The Jumarie derivative [3] of the Mittag‐Leffler function 

𝐸𝛽(𝛼𝑥
𝛽) is defined as follows:  

Applying term by term Modified 𝑅𝐿 derivative we get, 

𝐷𝛽[𝐸𝛽(𝛼𝑥
𝛽)] = 𝐷𝛽 [1 +

𝛼𝑥𝛽

𝛤(1 + 𝛽)
+

𝛼2𝑥2𝛽

𝛤(1 + 2𝛽)
+

𝛼3𝑥3𝛽

𝛤(1 + 3𝛽)
+⋯∞] 

                                                              =  𝛼 [1 +
𝛼𝑥𝛽

𝛤(1 + 𝛽)
+

𝛼2𝑥2𝛽

𝛤(1 + 2𝛽)
+

𝛼3𝑥3𝛽

𝛤(1 + 3𝛽)
+ ⋯∞] 

                                                              =  𝛼 𝐸𝛽(𝛼𝑥
𝛽) 

where 𝛽 is the order of the Jumarie derivative of Mittag‐Leffler function. 

 

Definition 2.5 (Fractional Laplace Transform). If a function 𝑓(𝑡) is defined for all  positive values of the variable 𝑡 and if 

∫ 𝐸𝛽
∞

0
(−𝑠𝛽𝑡𝛽)𝑓(𝑡)(𝑑𝑡)𝛽 exists and is equal to 𝐹(𝑠) , then 𝐹(𝑠) is called the Fractional Laplace Transform [4] of 𝑓(𝑡) , denoted 

by the symbol 𝐿𝛽[𝑓(𝑡)]. Hence 

                         𝐿𝛽[𝑓(𝑡)] = ∫ 𝐸𝛽

∞

0

(−𝑠𝛽𝑡𝛽)𝑓(𝑡)(𝑑𝑡)𝛽 = 𝐹(𝑠)                                   (2) 

   

The operator 𝐿𝛽 that 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠 𝑓(𝑡) into 𝐹(𝑠) is called the Fractional Laplace transform operator. 

 

Corollary 2.6. 

𝐿𝛽[𝐸𝛽(𝑎𝑡
𝛽)] =

1

𝑠𝛽 − 𝑎
, 𝑠𝛽 ≠ 𝑎 

  

Proof⋅ 

𝐿𝛽[𝐸𝛽(𝑎𝑡
𝛽)]  = 𝐿𝛽 [∑

𝑎𝑛𝑡𝛽𝑛

𝛤(𝛽𝑛 + 1)

∞

𝑛=0

] = ∑
𝑎𝑛

𝛤(𝛽𝑛 + 1)

∞

𝑛=0

𝐿𝛽[𝑡
𝛽𝑛] 

= ∑
𝑎𝑛

𝛤(𝛽𝑛 + 1)

∞

𝑛=0

𝛤(1 + 𝛽𝑛)

𝑠𝑛𝛽+𝛽
 

=∑
𝑎𝑛

𝛤(𝛽𝑛 + 1)

∞

𝑛=0

𝛤(1 + 𝛽𝑛)

𝑠𝑛𝛽+𝛽
 

                                                                =  
1

𝑠𝛽
∑(

𝑎

𝑠𝛽
)

∞

𝑛=0

𝑛

 

                                                                =
1

𝑠𝛽 − 𝑎
 

 

□  

Corollary 2.7. Prove that  𝐿𝛽[𝑓(𝑡) + 𝑔(𝑡)] = 𝐿𝛽[𝑓(𝑡)] + 𝐿[𝑔(𝑡)] 

 

 

Proof. 

                                         𝐿𝛽[𝑓(𝑡) + 𝑔(𝑡)] = ∫ 𝐸𝛽
∞

0
(−𝑠𝛽𝑡𝛽)[𝑓(𝑡) + 𝑔(𝑡)](𝑑𝑡)𝛽 

                                                   =  ∫ 𝐸𝛽
∞

0
(−𝑠𝛽𝑡𝛽)𝑓(𝑡)(𝑑𝑡)𝛽 + ∫ 𝐸𝛽

∞

0
(−𝑠𝛽𝑡𝛽)𝑔(𝑡)(𝑑𝑡)𝛽 

                                                                       =  𝐿𝛽[𝑓(𝑡)] + 𝐿[𝑔(𝑡)]                                                                       □ 

 

 

III. MAIN RESULTS 

Here we define the hyperbolic function of cosine and sine function with the help of Mittag--Leffler function as follows 

 

(a) 𝑐𝑜𝑠ℎ𝛽(𝑎𝑡
𝛽) =

𝐸𝛽(𝑎𝑡
𝛽) + 𝐸𝛽(−𝑎𝑡

𝛽)

2
 

 

 (b) 𝑠𝑖𝑛ℎ 𝛽(𝑎𝑡
𝛽) =

𝐸𝛽(𝑎𝑡
𝛽) − 𝐸𝛽(−𝑎𝑡

𝛽)

2
 

    Result 3.1. 

 

 𝐿𝛽(𝑐𝑜𝑠ℎ 𝛽(𝑎𝑡
𝛽)) =

𝑠𝛽

𝑠2𝛽 − 𝑎2
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   Proof 

𝐿𝛽(𝑐𝑜𝑠ℎ 𝛽(𝑎𝑡
𝛽))  =  𝐿𝛽 (

𝐸𝛽(𝑎𝑡
𝛽) + 𝐸𝛽(−𝑎𝑡

𝛽)

2
) 

        𝐿𝛽(𝑐𝑜𝑠ℎ 𝛽(𝑎𝑡
𝛽))  =  

1

2
[𝐿𝛽(𝐸𝛽(𝑎𝑡

𝛽) + 𝐿𝛽(𝐸𝛽(−𝑎𝑡
𝛽)] 

                      

                      =  
1

2
[ 

1

𝑠𝛽 − 𝑎
+

1

𝑠𝛽 + 𝑎
 ] 

                                                                                        

                                                                                        =  
𝑠𝛽

𝑠2𝛽 − 𝑎2
 

□ 

 

. Result 3.2. 

𝐿𝛽(𝑠𝑖𝑛ℎ 𝛽(𝑎𝑡
𝛽)) =

𝑎

𝑠2𝛽 − 𝑎2
 

 

Proof⋅ 

𝐿𝛽(𝑠𝑖𝑛ℎ 𝛽(𝑎𝑡
𝛽))  =  𝐿𝛽 (

𝐸𝛽(𝑎𝑡
𝛽) − 𝐸𝛽(−𝑎𝑡

𝛽)

2
) 

             𝐿𝛽(𝑐𝑜𝑠ℎ 𝛽(𝑎𝑡
𝛽))   =  

1

2
[𝐿𝛽(𝐸𝛽(𝑎𝑡

𝛽) − 𝐿𝛽(𝐸𝛽(−𝑎𝑡
𝛽)] 

                         =  
1

2
[

1

𝑠𝛽 − 𝑎
−

1

𝑠𝛽 + 𝑎
] 

 

     =  
𝑎

𝑠2𝛽 − 𝑎2
 

□ 

Example 3.3. We solve the following homogeneous 𝐹𝐷𝐸 using Fractional Laplace Transform, 

(𝐷2(
1

4
) − 5𝐷

1

4 + 6) 𝑦(𝑡) = 𝑠𝑖𝑛ℎ1
4

(𝑡
1

4) 

where 𝑦(𝑂) = 1, 𝑦
1

4(0) = −1 

Solution: The equation can be written in the form 

𝑦2(
1

4
) − 5𝑦(

1

4
) + 6𝑦 = 𝑠𝑖𝑛ℎ 1

4

(𝑡
1

4) 

Applying fractional Laplace transforms to both sides, we have 

𝐿1
4

[𝑦2(
1

4
)(0) − 5𝑦

1

4(0) + 6𝑦(0)] = 𝐿1
4

[𝑠𝑖𝑛ℎ1
4

(𝑡
1

4)] 

 

                                         𝐿1
4

[𝑦2(
1

4
)(0)] − 5𝐿1

4

[𝑦
1

4(0)] + 6𝐿1
4

[𝑦(0)] = 𝐿1
4

[𝑠𝑖𝑛ℎ1
4

(𝑡
1

4)] 

 𝑠
2

4𝐿1
4

[𝑦(0)] − 𝑠
1

4𝑦(0) − 𝑦
1

4(0)] − 5 [𝑠
1

4𝐿1
4

[𝑦(𝑂)] − 𝑦(𝑂)] + 6𝐿1
4

[𝑦(𝑂)]= 
1

𝑠
2
4−1

 

[𝑦(0)] =
1

(𝑠
2

4 − 1)(𝑠
2

4 − 5𝑠
1

4 + 6)
+
𝑦(0)(𝑠

1

4 − 5)

(𝑠
2

4 − 5𝑠
1

4 + 6)
+

𝑦
1

4(0)

(𝑠
2

4 − 5𝑠
1

4 + 6)
 

       𝑦(0)  = 𝐿1
4

−1 [
1

(𝑠
2

4 − 1) (𝑠
2

4 − 5𝑠
1

4 + 6)
] + 𝑦(0)𝐿1

4

−1 [
𝑦(0) (𝑠

1

4 − 5)

(𝑠
2

4 − 5𝑠
1

4 + 6)
] + 𝑦

1

4(0)𝐿1
4

−1 [
1

(𝑠
2

4 − 5𝑠
1

4 + 6)
] 

                  =
5

24
𝐿1
4

−1 [
𝑠
1

4

𝑠
2

4 − 1
] +

7

24
𝐿1
4

−1 [
1

𝑠
2

4 − 1
] +

1

8
𝐿1
4

−1 [
1

𝑠
1

4 − 3
] 

                          −
1

3
𝐿1
4

−1 [
1

𝑠
1

4 − 2
]  𝑦(0) − 2𝐿1

4

−1 [
1

𝑠
1

4 − 3
] + 3𝐿1

4

−1 [
1

𝑠
1

4 − 2
] 𝑦(0) 

+𝐿1
4

−1 [
1

𝑠
1

4 − 3
] 𝑦

1

4(0) − 𝐿1
4

−1 [
1

𝑠
1

4 − 2
]   𝑦

1

4(0) 

       =  
5

24
𝑐𝑜𝑠ℎ1

4

(𝑡
1

4) +
7

24
𝑠𝑖𝑛ℎ1

4

(𝑡
1

4) +
1

8
𝐸1
4

(3𝑡
1

4) −
1

3
𝐸1
4

(2𝑡
1

4) −  2𝐸1
4

(3𝑡
1

4)𝑦(0) 

+3𝐸1
4

(2𝑡
1

4) 𝑦(0) + 𝐸1
4

(3𝑡
1

4)  𝑦
1

4(0) − 𝐸1
4

(2𝑡
1

4)  𝑦
1

4(0) 
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                    𝑦(0) = 
−23

8
𝐸1
4

(3𝑡
1

4) +
5

3
𝐸1
4

(2𝑡
1

4) +
5

24
𝑐𝑜𝑠ℎ1

4

(𝑡
1

4) +
7

24
𝑠𝑖𝑛ℎ1

4

(𝑡
1

4) 

□ 

Example 3.4. We solve the following homogeneous 𝐹𝐷𝐸 using Fractional Laplace Transform,  

 

(𝐷2(
1

4
) − 4𝐷

1

4 + 13) 𝑦(𝑡) = 𝑐𝑜𝑠ℎ 1
4

(2𝑡
1

4) where 𝑦(0) = 1, 𝑦
1

4(0) = 1 

Solution:  The equation can be written in the form 

 

𝑦2(
1

4
) − 4𝑦(

1

4
) + 13𝑦 = 𝑐𝑜𝑠ℎ1

4

2 (𝑡
1

4) 

Applying fractional Laplace transforms to both sides, we have 

 

𝐿1
4

[𝑦2(
1

4
)(0) − 4𝑦

1

4(0) + 13𝑦(0)] = 𝐿1
4

 [𝑐𝑜𝑠ℎ 
1

4
(2𝑡

1

4)] 

𝐿1
4

[𝑦2(
1

4
)(0)] − 4𝐿1

4

[𝑦
1

4(0)] + 13𝐿1
4

[𝑦(𝑂)] 𝑠
2

4𝐿1
4

[𝑦(0)] − 𝑠
1

4𝑦(0) − 𝑦
1

4(0) 

                                                                       −4[𝑠
1

4𝐿1
4

[𝑦(𝑂)] − 𝑦(𝑂)] + 13𝐿1
4

[𝑦(𝑂)]  = 
𝑠
1
4

𝑠
2
4−4

 

 

𝐿[𝑦(0)] =
𝑠
1

4

(𝑠
2

4 − 4)(𝑠
2

4 − 4𝑠
1

4 + 13)
+

𝑦(0)(𝑠
1

4 − 4)

(𝑠
2

4 − 4𝑠
1

4 + 13)
+

𝑦
1

4(0)

(𝑠
2

4 − 4𝑠
1

4 + 13)
 

                               

𝑦(0) = 𝐿1
4

−1 [
𝑠
1

4

(𝑠
2

4 − 4) (𝑠
2

4 − 4𝑠
1

4 + 13)
] + 𝑦(0)𝐿1

4

−1 [
𝑦(0) (𝑠

1

4 − 4)

(𝑠
2

4 − 4𝑠
1

4 + 13)
] + 𝑦

1

4(0)𝐿1
4

−1 [
1

(𝑠
2

4 − 4𝑠
1

4 + 13)
] 

 

𝑦(0) =
208

225
𝐸1
4

(2𝑡
1

4) 𝑐𝑜𝑠ℎ1
4

(3𝑡
1

4) −
208

675
𝐸1
4

(2𝑡
1

4) 𝑠𝑖𝑛ℎ1
4

(3𝑡
1

4) 

                                                                +
1

225
[17𝑐𝑜𝑠ℎ1

4

(2𝑡
1

4) + 8𝑠𝑖𝑛ℎ1
4

(2𝑡
1

4)] 

□ 

IV. CONCLUSION 

The Laplace transformation method has been successfully applied to find an exact solution of Fractional Differential Equation. 

Some results are derived with the proofs. We conclude that the Laplace transformation method is a powerful efficient tool for 

finding a solution of Fractional Differential Equation. 
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