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Abstract - Lightweight symmetric ciphers have gained interest in constrained computing due to the increasing demand 

for security services as in the Internet of Things. This paper discusses the hardware implementations of PRESENT, a 

standardized lightweight cipher designed to overcome part of the security issues in extremely constrained conditions. 

The most representative realizations of this cipher are reviewed and two novel designs are presented. Using the same 

implementation conditions, the two new proposals and three state-of-the-art designs are evaluated and compared using 

area, performance, energy, and efficiency as metrics.  In particular, this design results to be adequate in regards to 

energy-per-bit and throughput-per-slice. 
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I.INTRODUCTION 

The Internet of Things (IoT) is said to revolutionize the way in which individuals and organizations interact with the physical 

world and among themselves.  According to IoT is regarded as an extension of Internet to the real world of physical objects, 

usually associated with such terms as “ambient intelligent”, “ubiquitous network”, and “cyber- physical system”. It has been 

cataloged as one of the six disruptive technologies with potential impacts on US interests out to 2025, which denotes its 

relevance. Everyday smart objects could become information-security risks, and the IoT could distribute those risks more 

widely than the conventional Internet. These security risks are the central issues that may delay the development and adoption of 

IoT applications. This has motivated the study of several options to guarantee trust, security, and privacy under this domain. 

However, it is particularly difficult to support security and privacy in the IoT . One reason of this is due to the large 

amount of sensitive data in the network (military, health care, financial, among others); another is due to the limited 

computational capabilities of the computing devices in the network, which are much more vulnerable to physical attacks and are 

character- ized by having low computational resources. These limitations must be taken into account during the design of 

privacy and security solutions for the IoT. 

Since  typical devices  in  IoT  (i.e.,  sensors  nodes  in  a Wireless Sensor Network) are equipped with low end micro- 

controllers  with  small  word  sizes  and  slow  oscillators, software-friendly lightweight primitives are desired. However, other 

representative devices in  IoT  as  the  RFID  tags usually do not have a software-programmable processor, requiring  to  realize  

a  cryptography-based solution  only  through hardware implementations. Moreover, the majority of these devices use limited 

power sources to the point where it is required to rely on energy harvesting, power optimization techniques, and novel 

transmission technologies. Therefore it is difficult to provide cryptographic solutions for constrained environments. In order to 

realize the full potential of hardware based security for the IoT, very significant research and engineering issues have to be 

addressed in novel and creative ways. The use of FPGAs is of particular interest for the development of hardware systems. The 

nature of frequently changing and evolving security protocols necessitates the use of devices with reconfigurable capabilities. 

Symmetric cryptography is   interesting for constrained devices due to the nature of its operations which are usually hardware-

friendly. When implemented efficiently enough so as to comply with the scarce resources of the IoT devices it is said to play a 

major role on the security of smart objects. In 2012 ISO/IEC standardized the symmetric block cipher PRESENT, a lightweight 

cipher intended for constrained applications. Several hardware implementations of PRESENT This paper discusses the hardware 

implementation issues of the cipher PRE SE NT, having as main contributions: 

1)  Two novel designs of PRESENT cipher aiming at reducing implementation size and energy consumption, considering 

the key generation mechanism in the design. 

2)  The experimental evaluation of five different PRE SE NT designs, three from related works plus the two proposed in this 

paper, is presented and discussed. This evaluation considers not only area and performance but also energy and efficiency 

as metrics for comparison purposes. 

The source files of the five designs evaluated are made publicly available to the community with agreement of all the 

authors as an effort to impulse the culture of transparency in the scientific method for this field of study. 

 

II. THE PRESENT CIPHER 

Present is a symmetric ultra-lightweight block cipher designed by ISO/IEC as “block cipher” suitable for lightweight cryptography, 

which is tailored for implementation in constrained environments. The cipher is based on a Substitution Permutation Network 

(SPN), with a round-based processing system. PRESENT supports 64-bit input data blocks and key sizes of 80 and 128 bits. To 

improve the security of hardware implementations the keying material can be generated using hardware primitives such as Physical 
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Unsolvable Function. In PRE SE NT, the state is a one-dimensional array of 64 bits that supports shift operations and parallel access 

over the data. The input key is processed internally to generate a round key for each of the 31 total rounds. The cipher uses three 

basic operations over the state, which is a structure that contains the plaintext and is modified at each round to produce confusion 

and diffusion over the data 

 
Fig. 1.    Encryption procedure  of PRES E NT 

 

The basic block diagram of  PRESENT  shown in  Fig.  1 

Closely follows its algorithm specification. A 64-bit data path enables the execution of an entire round in a single cycle, 

requiring in turn sixteen 4-bit substitutions (SBOX) and a 64-bit permutation. This design is derived directly from the 

algorithm specification and the latency is equivalent to the number of rounds. 

 

III. LIGHT WE IGHT HARDWARE 

 

This section is a review of optimized hardware architectures for PRE SE NT reported in the literature. For each design the 

basic outline, latency, and estimated implementation size is provided. The two PRE SE NT designs proposed in this paper are 

also described. Thus, a total of seven different hardware architectures for PRE SE NT are discussed in this section. 

The optimization strategy for this architecture is to reduce the number of substitution boxes, creating a direct trade-off between 

utilized resources and latency. The corresponding hardware architecture is the one shown in Fig. 2. 

There are two disadvantages in that proposal. First, the vari 

ation of size in the data path width to process the state requires additional logic for routing and control which in turn induces an  

area  overhead  that  could  reduce  the  efficiency of  the solution. Second, the reduction of the substitution layer to decrease 

the resource consumption would increase the latency cycles which can be prohibitive for certain applications.  
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Fig. 2. Area-optimized implementation of  PRES E NT 

 

The latency for this design depends on the number of SBOX utilized. In the case where two SBOX are used, if the design 

considers all the required ports, two cycles are needed to 

Take the input and produce the output, plus 8 × 31 cycles 
to process the state. In total, 250 cycles are necessary in a 

2-SBOX configuration. In terms of area, the total count for the proposed design can be expressed as 2-input NAND gates 

(considered equivalent to 1 GE. The cost of D-type Flip Flops (FF) and XOR gates is obtained through the equivalent circuit, 

considered to be of 5 and 4 GE, respectively. In silicon technology, the shifts and permutations are regarded to have no cost . 

For the equivalence of a 4-bit substitution box, the reader can refer to the estimation provided in the original proposal of 

PRE SE NT, which is said to be of 28 GE approximately. If using two substitution boxes to process the data path this 

architecture can be constructed with: 149 FFs (745 GE) for the state, key, and counter registers; 69 XORs (276 GE) to add the 

round key with the state and the round counter with the round key; three substitution boxes (84 GE) for the data path and the key 

schedule; a 64-bit permutation (0 GE) for the state; and a 61-bit shift (0 GE) for the round key. In total 1,105 GE are needed, 

approximately. 

The state is stored in a single 64-bit register and the key is stored in a single 128-bit register, both of these registers 

support multiple bit shifts and parallel inputs. This architecture is illustrated in Fig. 3.To process a 64-bit plaintext block, 16 

cycles are required to load the data, plus 31 cycles of latency for encryption, and  8  cycles  to  produce the  output,  

leading  to  a  latency of 55 cycles. 
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Fig.3. Iterative  architecture  for  PRES E NT 

 

 
Fig. 4.   Serial architecture for PRES E NT   

To achieve a lightweight implementation of PRE SE NT  by following the design of the serial architecture, and replacing the 

substitution boxes with a construction based on Boolean logic. The authors attempted to construct the PRE SE NT SBOX using 

logic gates. The design is achieved using Karnaugh mapping and factorization requiring 26 AND gates and 17 OR gates. This 

design has the same latency as the serial architecture. The reasoning for this optimization relies on the premise that a BRAM-based 

S-Box is rigid, so their proposal attempts to reduce the S-Box design through simplification of regular expressions. 

It is important to note that for FPGA technologies this kind of strategy would yield poor results, since in a conventional 

implementation process the synthesis tool tends to map the SBOX in the same way, regardless if it is described as a look- up-table 

or as a Boolean construction. 

The estimation of gate equivalents for this architecture is Similar to that of the serial architecture with the difference in the 

construction of the SBOX. Using the count of AND and OR gates provided by the authors, an SBOX designed this way would 

require 103 GEs. Then this design can be constructed using 197 FFs (985 GE), 13 XOR gates (52 GE), 2 SBOX (206 GE), a 64-bit 

permutation (0 GE), and a 125-bit shift (0 GE). This produces an approximate count of 1243 GE. 

In  this  design, the  aim  is  to  reduce the  data path width considering both, the substitution layer (sBox Layer) and the 

permutation layer (pLayer). The reduction of the substitution layer follows the conventional approach, so the data path can be 

adjusted to any width divisible by four, that is, the total input bits in  a  PRE SE NT’s substitution box. The reduction of width in 

the permutation layer is achieved thanks to a pattern in the structure of the function itself. With that reduction, the substitution layer 

can take a width of 16-bit too, thus requiring only four substitution boxes. Fig. 5 illustrates the data path of the 16-bit architecture 

for PRE SE NT. In this proposal the authors claim to achieve a lightweight implementation of PRE SE NT  by following the design 

of the serial architecture, and replacing the substitution boxes with a construction based on boolean logic.  
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The reasoning for this optimization relies on the premise that a BRAM-based S-Box is rigid, so their proposal attempts to reduce 

the S-Box design through simplification of regular expressions. The estimation of gate equivalents for this architecture is similar to 

that of the serial architecture with the difference in the construction of the SBOX. Using the count of AND and OR gates provided 

by the authors, an SBOX designed this way would require 103 GEs. Then this design can be constructed using 197 FFs (985 GE), 

13 XOR gates (52 GE), 2 SBOX (206 GE), a 64-bit permutation (0 GE), and a 125-bit shift (0 GE). This produces an approximate 

count of 1243 GE. 

In this design, the aim is to reduce the data path width considering both, the substitution layer (sBox Layer) and the permutation 

layer (p Layer). The reduction of the substitution layer follows the conventional approach, so the data path can be adjusted to any 

width divisible by four, that is, the total input bits in  a  PRE SE NT’s substitution box. The reduction of width in the permutation 

layer is achieved thanks to a pattern in the structure of the function itself.  

Only two data ports are required in this design, 16-bit to take in the plaintext and 16-bit to produce the output. To input the data, 4 

cycles are consumed, 124 cycles are then used to process the state, and finally 4 more cycles are required to produce the output, 

giving a total latency of 132 cycles. This work presents an attractive data path, but the key generation is not properly addressed.  

 

 
Fig. 5. 16-bit architecture for the PRES E NT  cipher 

 

keying material in the architecture and to allow the synthesis tool to generate the combinational design that produces the round 

keys. This is interesting for this specific design since the width of the round key is reduced from 64 to 16-bit, which enables a 

reduction in the complexity of the combinational process. Under this approach, it is required to calculate the whole key set 

beforehand and to describe it as a ROM module. If it is specified that the FPGA cannot use memory blocks to implement this 

module, the synthesizer will be forced to use LUTs to create a combinatorial block capable of generating each one of the round 

keys by the cipher. The main advantages of this design are: it has a reduced latency because the key is not entered to the circuit 

and the associated  clock  cycles  (one  for  80-bit  keys  and  four  for 128-bit keys) are  avoided, and  there  is  no  need  for  

extra registers to store the key since it can be read directly from the key space. This approach, however, can raise some 

security concerns as it is possible that side channel vulnerabilities allow the unauthorized retrieval of keying materials. In this 

architecture the cipher’s data path can be constructed using 80 FF (400 GE), 16 XOR (64 GE), 4 SBOX (112 GE), and a 16-bit 

permutation. This produces an estimate cost for the data path of 576 GE. It is difficult to estimate the total resource usage in 

GE for this design, since the key module is an architecture that can be considered as a black box generated by the synthesis 

tool.The base design for the two architectures proposed in this paper follow the strategies reported in [20] in relation to the 

construction of the data path. The data path design is illustrated in Fig. 6. 
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Fig. 6.    Data path for the PRES E NT architecture proposed in this work 

This is an area optimized implementation of PRE SE NT using a 128-bit key. The input and storage mechanisms for the state 

and key data work similarly to those of the iterative architecture. The optimization strategy is based on reducing the number 

of substitution boxes in the substitution layer to two. The substitution boxes in the key schedule are also replaced by those in 

the substitution layer. To achieve this replacement, 8 cycles per round are required to process the64-bit  state  and  during  a  

9th  cycle  in  which  the  64-bit permutation takes place, the round key is also updated. Fig. 4 illustrates this proposal. This 

design requires 16 cycles to load the data, 279 cycles to process the state, and 8 cycles to produce the output, this is a total 

latency of 303 cycles. From Fig. 4 it can be noted that this design can be constructed using 197 FFs (985 GE), 13 XOR gates 

(52 GE),2 SBOX (56 GE), a 64-bit permutation (0 GE), and a 125-bit shift (0 GE). This produces an approximate count of 1. 

 

IV. EXPERIMENTAL EVAL UAT ION 

A. Configurations 

To compare the implementation results with the state of the  art  architectures under fair  conditions, the  source files 

from  [18]  and  [19]  were  requested  to  synthesize  all  the designs for the same device and with the same implementation 

parameters and tools. Only the source files for the iterative and serial architectures from [18] were provided by the authors. 

Having access to the source files of the design in [20] and together with the source of the proposed designs in this paper, five 

different PRE SE NT designs were implemented, evaluated and analyzed. 

 
 

 

Each one of the evaluated architectures included I/O mecha- nisms that allow to use the hardware module as an independent core 

or  in  an  integrated system. Each implementation was made targeting a specific FPGA board to generate the physical 
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constraints file. All the source files and relevant data is available at  http://www.tamps.cinvestav.mx/~hardware under a free 

software license. The five configurations of PRE SE NT (summarized in Table II) are: 

1) Iterative Architecture (C1): It is the architecture reported in [18] that closely follows the specifications of the algorithm presented 

in [24]. The source files for this implementation were provided by its creators [18]. 

2) Serial  Architecture  (C2):  This  is  an  area  optimized implementation of PRE SE NT using a 128-bit key. The source files  for  

this  implementation  were  also  provided  by  its creators [18]. 

3) 16-Bit  Architecture (C3):  This  configuration is  based of the approach where the round keys are used to generate a key module 

which is embedded in the architecture as combinational logic.  This  design  is  akin  to  that  presented in  [20]  and  the  

implementation was  revamped  with  ideas presented in [18]. 

4) 16-Bit Architecture With 80-Bit Keys (C4): This design Represents the  design  proposed  in  this  work  using  keys of 80-bit. 

5) 16-Bit Architecture With 128-Bit Keys (C5): This architecture consists of the area optimized data path proposed in Section III 

with a key schedule to process 128-bit keys. 

 

B. Environment 

The five PRE SE NT architectures to be evaluated were syn- the sized for Xilinx FPGAs using the ISE Design Suite 14.7 As 

computing platform,  a  set  of  low  cost  development boards   were   considered.  To   study   the   architectures i n  LUT-4 

FPGAs the Spartan-3 (xc3s200-5ft256) and Virtex-4 (xc4vlx25-12ff668) were used. In regards to LUT-6 technology the Spartan-

6 (xc6slx16-3csg324) and Virtex-5  (xc5vlx50t-3ff1136) were used. As computing platform, a set of low cost development 

boards   were   considered.  To   study   the   architectures in LUT-4 FPGAs the Spartan-3 (xc3s200-5ft256) and Virtex-4 

(xc4vlx25-12ff668) were used. In regards to LUT-6 technology the Spartan-6 (xc6slx16-3csg324) and Virtex-5  (xc5vlx50t-

3ff1136) were used. Newer FPGAs such as the 7 series were not considered since according to the manufacturer the 

Configurable Logic Blocks in these FPGAs are similar to those used in FPGAs of the 6 series such as the Spartan 6, 

whichLow-resource implementations usually do not use the maxi- mum possible frequency, but limit it to a lower frequency, as is 

the case in RFID applications where a frequency of 13.56MHz is used. might lead to similar  implementation results  in  regards 

to the power estimation depends on both, the size, and the signal activity of the implementation. The energy will then be  

directly  affected  by  the  latency  if  all  the  architectures are evaluated using a constant operational frequency. Since all the 

evaluated implementations have the same block size, the energy-per-bit has a linear proportion to the energy. This metric is 

useful to compare the results provided against those of ciphers with different block sizes however. 

 

 
 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org
http://www.tamps.cinvestav.mx/~hardware


© 2018 IJEDR | Volume 6, Issue 1 | ISSN: 2321-9939 

 

IJEDR1801158 International Journal of Engineering Development and Research (www.ijedr.org) 921 

 

 
 

V.  RESULTS 

Table III presents the performance and resource usage results for the five architectures under evaluation in the four FPGAs devices. 

Table IV presents the power and energy consumption results. 

The resource usage for all the architectures is presented for the four FPGAs selected as implementation platform, this metric is 

illustrated in Fig. 9. The results are consistent for both LUT-4 FPGAs. In the case of the LUT-6 platforms it can be noted how 

implementations in the Spartan-6 FPGA use less LUT elements, which derives in lower slice counts than those of the 

implementations in the Virtex-5 FPGA. This is due to slight variations in the slice architecture for both FPGAs require low resource 

usage but also have high performance constraints determined by the application. The later enables a comparison across all the 

implementations which can be useful for systems that require low resource usage and can accept compromises in the performance. 

The frequency of 13.56 MHz is utilized since it is appropriate for RF applications, which is the case of some IoT transmitters. This 

metric will be used to discuss the performance results. The throughput calculated using  a  constant frequency can  also  be  

matched  with  the energy consumption analysis, which is calculated using the same frequency. From the maximum frequency it 

can be noted that the results depend not only on the implementation, but also  

 
Fig. 9.    Resource usage for the different configurations in the different FPGAs utilized. (a) Slices. (b) Flip-Flops. (c) LUTs. 
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Fig. 10. Throughput for the five PRES E NT  designs, using different FPGAs and different operational frequencies. (a) Using 

the maximum frequency. (b) At 13.56 MHz. (c) At 100 KHz. 

 

 
Fig. 11.   Throughput per slice for the different configurations in the different FPGAs utilized. 

 

on the underlying FPGA platform. The performance compar- ison for the different implementations is shown in Fig. 10 

using the maximum frequency of the implementation, the fre- quency recommended in [32] of 13.56MHz, and the frequency of 

100KHz, which is commonly used and reported in related works. 

The throughput per slice is a metric utilized to illustrate the efficiency of the architectures when it is desired to study the trade-

off between the area reduction and the performance of the implementations. In this case the non-optimized implemen- tation of 

PRE SE NT will have the maximum efficiency, and the area-optimized architectures can be ranked from this reference. Note that 

the implementation with a reduced key size should be compared having in mind that it also features a security trade-off. Fig. 11 

illustrates the throughput per slice for the different configurations. 

The analysis performed for each architecture delivers power and temperature estimations based on a user defined opera- tional 

frequency and temperature. It was determined to use a frequency of 13.56 MHz for all the studies and the default operation 

temperature. Since the goal of this experiment is to study the energy consumption, only the power results were used. In most 

of them it is shown how the static power remains constant across the different implementations for the same FPGA board. 

Regarding the dynamic power, it can be noted how it changes depending on the switching activity of the circuit. The total power 

is the sum of the static and dynamic power. The power analysis demonstrates how selecting the appropriate FPGA board can 

deliver a change with a signif- icance of an order of magnitude. A graphic comparison for 
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Fig. 12.    Results of the energy analysis for the different configurations in the different FPGAs utilized. (a) Energy 

consumption. (b) Energy-per-bit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Power as a function of the operational frequency for the five PRES E NT  architectures evaluated in the Spartan-6 

FPGA. (a) Architecture C1. (b) Architecture C2. (c) Architecture C3. (d) Architecture C4. (e) Architecture C5. 

 

the energy consumption for the different implementations is shown in Fig. 12a. The energy per bit metric, used in this work also as 

an efficiency measurement, represents the energy cost associated to process a single bit of the message. Since in this particular case 

all the architectures under study have the same state size, the energy per bit will be directly related to the energy. This can be of 

interest to compare these results with those obtained from implementations of algorithms with different state size. In Fig. 12b the 

energy per bit for the different implementations is presented. Some application scenarios may require to operate not at 13.56MHz 

but at a multiplier of this frequency. This however can represent an increment in the power consumption of the architecture. 

 

VII. CONCLUSIONS 

This paper presented a comparison of hardware architec- tures for the  PRE SE NT  cipher. Two  alternatives have been studied to 

generate the round keys required by the algorithm. A  16-bit  datapath  architecture  with  128-bit  key  schedule was  presented  and  

can  be  compared  directly  to  relevant works in the literature. A 16-bit datapath architecture with 80-bit key schedule was 

developed for applications where an area/security trade-off can be established.Experimental  results  for  the  proposed  architectures  

and the most relevant implementations of PRE SE NT  in the state of the art were obtained. The results presented are derived from a 

fair experimentation. The different evaluations were conducted  following  well  defined methods  such  that  it  is possible to 

replicate the presented results using the source files for all the architectures analyzed in this work. The source files were released 
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with permission from the authors under a free software license. Of the architectures reviewed the iterative design (C1) achieves the 

best results in performance and energy consumption. In contrast, the serial architecture(C2) produces the lowest implementation 

size but registers the worst mea- surements for performance and energy consumption. From  the  architectures  proposed  in  this  

paper,  the  one that utilizes 128-bit keys (C5) features an efficient trade-off, in terms of throughout-per-slice and energy-per-bit for 

small applications that also have performance constraints such as IoT nodes. The architecture using 80-bit keys (C4) is a good 

alternative for applications that require small implementation area with good performance, at the cost of a smaller key size. All the 

implementations for the architectures evaluated in this work have been published so that anyone interested can replicate the 

experimental results presented and use the designs under a free software license. 
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