
© IJEDR 2018 | Volume 6, Issue 2 | ISSN: 2321-9939 

 

IJEDR1802023 International Journal of Engineering Development and Research (www.ijedr.org) 124 

 

Analysis of A 2DOF Nonlinear Damping System for 

Effectively Suppressing Vibrations Using Linear 

Vibration Absorber 
1Visakh S Kumar, 2Dr Y V K S Rao 

1MTech Scholar, 2Rtrd. Professor in Mechanical Engineering 
1Department of Mechanical Engineering, Mar- Baselios College of Engineering, Trivandrum, India  

 

 

Abstract - In this study the nonlinear analysis of 2 DOF vibration systems with weakly nonlinear damper is studied. A 

linear vibration absorber is used to suppress the nonlinear vibrations of forced nonlinear damping system. A simple 

perturbation method known as straight forward expansion is used to find the approximate analytical solution. On the 

basis of this solution, a time with displacement graph is obtained. Using the same system parameters, a computer 

generated graph is also formed. Both graphs are studied. As the graphs are found to be valid, further studies are being 

conducted with the help of frequency response curves, time plots and phase planes.  

 

IndexTerms - Degrees of Freedom, Dynamic Vibration Absorber. 

 

 

I. INTRODUCTION 

 Many practical systems we are experiencing in our day to day life are nonlinear in nature. However; the presence of non-

linearity introduces dangerous instabilities, which in some cases may result in amplification rather than reduction of the vibration 

amplitudes. Many researchers have used springs as nonlinear system. Here an attempt is made to analyse the nonlinearity of a 

vibrating system using nonlinear damper for the reduction of vibration. The mathematical models of the nonlinear systems are 

represented by nonlinear differential equations. Hence, there are no general methods for the analysis and synthesis of nonlinear 

control systems. Various methods of solving the nonlinear vibration problems are Lindstedt’s perturbation method, the iterative 

method and the Ritz- Galerkin method. The nonlinear systems do not obey superposition principle. For this reason, the response 

of nonlinear systems to a particular test signal is no guide to their behaviour to other inputs. The nonlinear system response may 

be highly sensitive to input amplitude. Hence, in a nonlinear system, the stability is very much dependent on the input and also the 

initial state. 

 Our main aim in this paper is to analyze the nonlinearity of a vibration system with weakly nonlinear damper. The 

approximate analytical solution for nonlinear system with nonlinear damper is carried out by using straight forward expansion. 

The time plots with displacement are also plotted. A comparison of plots is made with the computer generated solution obtained 

from MATLAB to ensure the validation of the solution.  

 

Abbreviations  

 

DOF- Degrees of freedom 

DVA- Dynamic Vibration Absorber 

 

 

II. RESEARCH  METHODOLOGY 

 

2.1 Mathematical Modeling Using Nonlinear Damper 

 

 The mass, M is attached to a rigid boundary through a spring & viscous damper of linear plus nonlinear characteristic, as 

shown in Figure 1. The displacement of the nonlinear primary system & the linear absorber system are denoted by x & xa 

respectively. By applying Newton’s second law of motion, two equations of motion for the new system composed of the 

nonlinear primary system incorporated by a linear absorber system may be written as 
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Fig.1 System with Nonlinear Damper 

 

 

Mẍ + Kx − ka(xa − x) + Cẋ + c1x2𝑥̇ = F0cosωt  

maẍa + ka(xa − x) + caẋa = 0   

 

 Where M, K, C, c1 and ma, ka, ca are the system parameters for primary nonlinear system and secondary absorber system 

respectively. Dividing M on both sides of Eq.1 & dividing ma on both sides of Eq.2 & then rewriting the resultant equations 

yields the following equations. 

 

ẍ + (
K+ka

M
) x − (

ka

M
) xa + (

C

M
) ẋ + (

c1

M
) x2𝑥̇ = (F0/M)cosωt 

ẍa + (
ka

ma
) (xa − x) + (

ca

ma
) ẋa = 0    



ẍ + ω1
2x − mωa

2xa + µ1ẋ  +  ϵx2𝑥̇ = Fcosωt  



ẍa + ωa
2(xa − x) + µ2ẋa = 0    

 

 

 The solution x of our problem is a function of the independent variable t and the parameter, ϵ i.e. x = x(t;ϵ). One of the 

perturbation method known as the straight forward expansion is used to expand the above equations to determine the analytical 

solution. The straight forward expansion in the form of a power series in ϵ is given by 

 

x(t; ϵ) = x0(t) + ϵx1(t) + ϵ2x2(t) + ϵ3x3(t) + ⋯  

 

 Here only the first term in the correction series is considered and neglecting the higher order terms, so that the 

approximate solution in the form 



x(t; ϵ) = x0(t) + ϵx1(t)     



Substituting Eq.8 into Eq.5 and Eq.6, and equating each of the coefficients of ϵ0 & ϵ1 to zero 

 

ẍ0 + ω1
2x0 + µ1ẋ0 = Fcosωt + mωa

2xa0   
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ẍ1 + ω1
2x1 + x0

2𝑥̇0 + µ1ẋ1 = mωa
2xa1   



ẍa0 + ωa
2xa0 + µ2ẋa0 = ωa

2x0    



ẍa1 + ωa
2xa1 + µ2ẋa1 = ωa

2x1    



 Since Eq.9 is inhomogeneous, its general solution can be obtained as the sum of a homogeneous solution and any 

particular solution. Therefore the complete solution is given by 

 

x0(t) = xh(t) + xp(t)     



x0(t) = Ae(−ξω1t) cos(ωdt − ψ) + X0 cos(ωt − ϕ)  



To find x1(t), solve for unknowns x1 & xa1. Eq.10 & Eq.12 on rearranging gives 

 

ẍ1 + ω1
2x1 + µ1ẋ1 − mωa

2xa1 = −(x0
2𝑥̇0)   



ẍa1 + ωa
2xa1 + µ2ẋa1 − ωa

2x1 = 0    



(D2 + ω1
2 + Dµ1)x1 − mωa

2xa1 = −(x0
2ẋ0)  



(D2 + ωa
2 + Dµ2)xa1 − ωa

2x1 = 0    



 In order to find the solution of x1 & xa1 from the above Eq.17 & Eq.18, multiply Eq.17 by ωa
2 & Eq.18 by (D2 + ω1

2 +
Dµ1) and then adding the resulting equations will give 

(D2 + ω1
2 + Dµ1)(D2 + ωa

2 + Dµ2)xa1 −  mωa
4xa1 = −(x0

2ẋ0)ωa
2 

(D4 + D2(ωa
2 + ω1

2 + µ1µ2) + D3(µ1 + µ2) + D(µ1ωa
2 + µ2ω1

2) + ω1
2ωa

2 − mωa
4)xa1 = −(x0

2ẋ0)ωa
2

(D4 + C1D3 + C2D2 + C3D + C4)xa1 = (ωX0
3 cos2(ωt − ϕ)) ωa

2sin (ωt − ϕ)

(D4 + C1D3 + C2D2 + C3D + C4)xa1 = C5 cos2(ωt − ϕ)sin (ωt − ϕ) 

Using trigonometric relations, 

cos2(ωt − ϕ) = 1 − sin2(ωt − ϕ)   

sin3(ωt − ϕ) =
3

4
sin(ωt − ϕ) −

1

4
sin 3(ωt − ϕ)  (22) 

Substituting Eq.21 & using the trigonometric relation in Eq.22 into Eq. 20, will give 

xa1 =
1

(D4 + C1D3 + C2D2 + C3D + C4)
(C5 sin(ωt − ϕ) +

C5

4
sin 3(ωt − ϕ) −

3C5

4
sin(ωt − ϕ) 

xa1p =
1

(D4 + C1D3 + C2D2 + C3D + C4)
(C5 sin(ωt − ϕ) + C7 sin 3(ωt − ϕ) +  C6 sin(ωt − ϕ)) 

xa1p =
1

(D4+C1D3+C2D2+C3D+C4)
(C8 sin(ωt − ϕ) + C7 sin 3(ωt − ϕ)) (23) 

xa1p = PI1 + PI2      (24) 

PI1 =
1

(D4 + C1D3 + C2D2 + C3D + C4)
(C8 sin(ωt − ϕ)) 

Put D2= -ω2 

PI1 =
1

(ω4 − C2ω2 + C4 + (C3 − C1ω2)D)
(C8 sin(ωt − ϕ) 
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PI1 =
1

(C9 + C10D)
(C8 sin(ωt − ϕ) 

Multiply both numerator and denominator by the conjugate of   (C9 + C10D) & then on solving gives 

PI1 =
1

(C9
2+C10

2 ω2)
(C8C9sin(ωt − ϕ) − ωC8C10cos(ωt − ϕ)) (25) 

PI2 =
1

(D4 + C1D3 + C2D2 + C3D + C4)
(C7 sin 3(ωt − ϕ)) 

Put D2= -9ω2 

PI2 =
1

(81ω4 − 9C2ω2 + C4 + (C3 − 9C1ω2)D)
(C7 sin 3(ωt − ϕ)) 

PI2 =
1

(C11 + C12D)
(C7 sin 3(ωt − ϕ)) 

Multiply both numerator and denominator by the conjugate of (C11 + C12D) & on solving gives 

PI2 =
1

(C11
2 +9C12

2 ω2)
(C7C11 sin 3(ωt − ϕ) − 3ωC7C12 cos 3(ωt − ϕ)) (26) 

xa1p =
1

(C9
2+C10

2 ω2)
(C8C9sin(ωt − ϕ) − ωC10C8cos(ωt − ϕ)) + 

1

(C11
2 + 9C12

2 ω2)
(C7C11 sin 3(ωt − ϕ) − 3ωC7C12 cos 3(ωt − ϕ)) 

  xa1p = C13sin(ωt − ϕ) − C14cos(ωt − ϕ) + C15sin3(ωt − ϕ) − C16cos3(ωt − ϕ)   

       (27) 

Substitute Eq.27 into Eq.18 & then on solving gives 

x1p(t) =
ω2

ωa
2 (−C13 sin(ωt − ϕ) + C14cos(ωt − ϕ) − 9C15sin3(ωt − ϕ) +  9C16cos3(ωt − ϕ) + (C13sin(ωt − ϕ) −

C14cos(ωt − ϕ) +   C15sin3(ωt − ϕ) − C16cos3(ωt − ϕ)) +
µ2ω

ωa
2 (C13cos(ωt − ϕ) + C14sin(ωt − ϕ) + 3C15cos3(ωt − ϕ) +

3C16sin3(ωt − ϕ))     (28) 

 
 Where C1, C 2, C3 ….C16 are constants. The complete solution is given by x1(t) = x1h(t) + x1p(t). For an under damped 

system x1h(t) is given by 

 

x1h(t) = Ae(−ξω1t) cos(ωdt − ψ)    (29) 

 

Thus the approximate solution can be obtained by substituting Eq.14, Eq.28 & Eq.29 into Eq.8 

x(t; ϵ) = x0(t) + ϵx1(t) + ⋯ 

= Ae(−ξω1t) cos(ωdt − ψ) +
F

[{(ω1
2 − ω2)  −  

1

ωa
2−ω2 mωa

4}
2

 + µ1
2ω2]

1

2

cos(ωt − ϕ) + 

ϵ [ 
ω2

ωa
2 (−C13 sin(ωt − ϕ) + C14cos(ωt − ϕ) − 9C15sin3(ωt − ϕ) + 9C16cos3(ωt − ϕ) + (C13sin(ωt − ϕ) − C14cos(ωt −

ϕ) +  C15sin3(ωt − ϕ) − C16cos3(ωt − ϕ)) +
µ2ω

ωa
2 (C13cos(ωt − ϕ) +     C14sin(ωt − ϕ) + 3C15cos3(ωt − ϕ) +

3C16sin3(ωt − ϕ))) + Ae(−ξω1t) cos(ωdt − ψ)]  (30) 


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III. VALIDITY OF THE SOLUTION 

 

 This section deals with the comparison of the graphs obtained from analytical solution with that of a computer generated 

mat lab solution, so that the validity of the solution can be assessed. 

 

3.1 Analytical Solution 

 

 On the basis of the above solutions, a time with displacement graph is generated. The time plots generated from the 

analytical solutions for the system parameters M=10kg, ma=0.8kg, K=15N/m, ka=10N/m, C=0.15Ns/m, ca=0.03Ns/m, 

c1=0.1Ns/m3, F0=5.5N are shown in Figure 2.  



 
Fig.2 Analytical Solutions 

 





3.2. MAT-LAB Solution 

 

 In equations of motion, take  x = y(1),  ẋ = 𝑦(2), xa = 𝑦(3) &  ẋ𝑎 = 𝑦(4), so that the derivatives of y(1), y(2), y(3) & 

y(4) are  y(2), ẍ, y(4) & ẍ𝑎. For obtaining the time plots, y(2), ẍ, y(4) & ẍ𝑎 are taken as  functions  f(1), f(2), f(3) & f(4) 

respectively. By using these functions different time plots with displacement, velocity, acceleration of the system can be plotted. 

 

For the system with nonlinear damper, say 

f(1) = y(2), 
 

f(2) =
F0

M
cos ωt −

K + ka

M
y(1) +

ka

M
y(3) −

C

M
y(2) −

c1

M
y(1)2y(2) 

 
f(3) = y(4), 

 

f(4) = −
ka

ma

(y(3) − y(1)) −
ca

ma

y(4) 

 
The time plot generated from these functions using the same system parameters used above are shown in Figure 3. 
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Fig.3 Mat lab solutions 

 

 

 It is observed that the graphs are almost similar in various situations which ensures the validity of the approximate 

analytical solutions. The slight discrepancy seen in the graphs are due to the approximations that already taken earlier in Eq.8. 

 

 

IV. RESULTS AND DISCUSSION 

 

4.1. Numerical Simulations 

 

 This section presents illustrative examples to show the effectiveness of the nonlinear damping system for suppressing the 

nonlinear vibrations under primary resonance conditions. As the graphs are found to be valid, further studies are being conducted 

with the help of frequency response curves, time plots and phase planes. Numerical simulations have been performed under the 

following values of the system parameters shown in Table 1. The linearized natural frequencies of the nonlinear primary system 

before and after being attached by the vibration absorber are found to be approximately, ω10=2.098 rad/sec, ω1=2.280 rad/sec and 

natural frequency of the absorber be ωa=3.651 rad/sec. 

 

Table 1 System parameter values 

 

Primary 

mass, 

M 

(kg) 

Absorber 

mass,  

ma 

(kg) 

Linear 

stiffness, 

K 

(N/m) 

Absorber  

stiffness, 

ka 

(N/m) 

Primary 

damping, 

C 

(Ns/m) 

Absorber 

damping, 

ca 

(Ns/m) 

Nonlinear 

damper, 

c1 

(Ns/m3) 

External 

Excitation, 

F0 

(N) 

10 0.6 44 8 0.1 0.08 0.01 4.5 

 

 

 Using the system parameters given above, the displacements of the primary system for different time period have been 

plotted as shown in Figure 4. It is observed that for a small value of damping the amplitude goes on decreasing with time. For 

time t=450s, the amplitude almost reaches zero. 
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 Fig.4 Response of the nonlinear system at c1=0.01 

 

 

 The response of the system for different values of c1 =0, 0.01, 0.1 & 0.5 are shown in Figure 5. It is seen that the nature 

of the graph may not be changed for smaller nonlinear damping values. 

 
Fig.5 Response of the nonlinear system at c1= 0, 0.01, 0.1, 0.5 

 

 

 

 

 

 

 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org


© IJEDR 2018 | Volume 6, Issue 2 | ISSN: 2321-9939 

 

IJEDR1802023 International Journal of Engineering Development and Research (www.ijedr.org) 131 

 

4.2. Stability of the System 

 

 The trajectory in the phase plane for the system with nonlinear damping as shown in Figure 6. It is seen that the system 

is stable as the trajectory approaches to zero. It is also observed that smaller nonlinear damping values will have no effect as the 

phase plane remains in the same fashion. 

 
Fig. 6 Phase plane for the nonlinear system with c1=0.01 

 

 

4.3. Frequency Response Curves 

 

The amplitude spectrum for the system with nonlinear damper with the function of frequency as shown in Figure 7. It is 

found that increase of absorber damping as well as nonlinear damping leads to reduction of peak amplitude at resonant 

frequencies. It is seen that for a nonlinear system, a small amplitude peak is observed. This is because the proposed nonlinear 

structure is a 2DOF system so that the system has two linearized natural frequencies. 

 

 

 
Fig. 7 Single-sided Amplitude spectrum of x(t) (Nonlinear damper) 
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V. CONCLUSION 

 

 In this paper, the nonlinear analysis of a vibration system with weakly non-linear damper is studied. A simple 

perturbation method known as straight forward expansion is used to find the approximate analytical solutions. Neglecting the 

higher order terms in the expansion, the approximate analytical solutions for the given model was derived. On the basis of this 

solution, a time with displacement graph is obtained. Using the same system parameters, a computer generated graph is also 

formed. Both graphs are studied. . It is found that the plots are almost identical in various situations which ensure the validity of 

the analytical solutions. The slight discrepancy seen in the graphs are due to the approximations that already taken earlier in Eq.8.   

 

 As the graphs are found to be valid, further studies are being conducted with the help of frequency response curves, time 

plots and phase planes. It is found that the nonlinear system with nonlinear damper will reduce the amplitude of the primary 

system in comparison with that of the linear system. The stability and the response of the system is also studied with the help of 

phase plane. It is also found that the entire trajectory in the phase plane approaches to zero due to damping & the system is stable 

and it is also observed that smaller nonlinear damping values will have no effect as the phase plane remains in the same fashion. 
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