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Abstract—  The COordinate Rotation DIgital Computer (CORDIC) algorithm was introduced for performing  computing 

tasks such as the calculation of trigonometric, hyperbolic and logarithmic functions, real and complex multiplications 

and many more using simple add and shift operation. CORDIC has been utilized for applications in diverse areas such 

as signal and image processing, communication systems, robotics and 3-D graphics apart from general scientific and 

technical computation. The CORDIC offers the opportunity to calculate all the desired functions in a rather simple way 

without using any hardware multiplier. The operations involved in the algorithm are addition, subtraction and bit shift 

with table lookup. Due to the simplicity of the involved operations the CORDIC algorithm is very well suited for VLSI 

implementation.  In this article, we present a detailed overview of the CORDIC algorithm and review various 

architectures along with their potential and limitation. 

 

Index Terms—CORDIC algorithm, FPGA, VLSI architecture 

_____________________________________________________________________________________________________ 

I. INTRODUCTION 

Elementary function evaluation is necessary to the implementation of signal processing, computer graphics, and scientific 

computation. Digital frequency synthesizer, geometrical transformation, and N-body simulation are some examples. Although 

software implementations based on polynomial approximation are available and easy to implement, they usually become the 

bottle neck for computation intense and real-time applications like 3D graphics processing and robotics. Therefore, many 

algorithms have been implemented by dedicated hardware to accelerate elementary functions calculation. Among these is 

CORDIC which is well known for its simplicity and the rich variety of elementary functions it can provide [4]. 

The basic concept of CORDIC arithmetic is based on the easy and ancient principles of two-dimensional geometry. But the 

iterative formulation of a computational algorithm for its implementation was first described in 1959 by Jack E. Volder [1] for 

the computation of trigonometric functions, multiplication and division. Not only a wide variety of applications of CORDIC 

have emerged in the last so many years, but also a lot of progress has been made in the area of algorithm design and development 

of architectures for high-performance and low-cost hardware solutions of those applications [6]. CORDIC-based computing 

received increased attention because of by varying a few simple parameters, it could be used as a single algorithm for unified 

implementation of a wide range of elementary transcendental functions involving logarithms, exponentials, and square roots 

along with those suggested by Volder [1]. Also CORDIC technique is a better choice for scientific calculator applications. 

II. CORDIC ALGORITHM 

The algorithm operates in one of two modes: Rotation or vectoring. The two modes determine which set of functions can be 

computed using the algorithm. In Rotation mode, the x and y components of the starting vector are input, as well as an angle of 

rotation. The hardware then iteratively computes the x and y components of the vector after it has been rotated by the specified 

angle of rotation. In Vectoring mode, the two components are input, and the magnitude and angle of the original vector are 

computed. This is accomplished by rotating the input vector until it is aligned with the x-axis. By recording the angle of rotation 

to achieve this alignment, we get the angle of the original vector. Once the algorithm is complete, the x-component of the vector 

is equal to the magnitude of the starting vector. 

From fig. 1 XR = Xi and YR = Yi can be found as below,  

Xi = X0∗cos (ф) − Y0∗sin (ф) (1) 

Yi = Y0∗cos (ф) + X0∗sin (ф)  (2)  

 

Rearranging the terms,  

Xi = cos (ф) ∗ [X0−Y0∗tan (ф)] (3) 

Yi = cos (ф) ∗ [Y0+X0∗tan (ф)] (4) 

  

The CORDIC algorithm makes the required calculations to evaluate the sine and cosine values of a particular angle in radians 

by changing the coordinates from polar form to Cartesian form. For calculate the values of sine and cosine, the coordinates 

corresponding to the angle on a unit circle is begin, the x coordinate of which indicates the cosine values while the y coordinate 

indicates the sine value.  

In the CORDIC algorithm, there are two fundamental concepts to obtain rotation without multiplication. The first 

fundamental approach is that input vector rotation by an angle ф is equal to rotating the vector by some smaller angles фi.  
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The step size is confirmed by selecting angle such that tan (фi) is an inverse power of two. It will permit to make these 

multiplications using bit shifts. In the table 1, the values of ф˚ at every iteration is mentioned. 

  

tan (фi) = ± 2−𝑖 for i = 0,1,2,3,.....n (5) 

 

 
Figure 1 vector rotation diagram 

Another multiplications in the CORDIC which is multiplication by cos (ф) behaves as a system gain. It is also called scaling 

factor. The x and y both components required to be multiplied by the scaling factor. We can avoid the scaling factor considering 

in the every iteration and we can scale down both the x and y components to arrive at the final values of Xi and Yi. Here, we can 

understand how the scaling factor affect the final answer when applying the successive elementary rotations of the CORDIC 

algorithm. If we desire to rotate the input vector by 57.535˚ which is 45˚+26.565˚−14.03˚. So, for finding X2 and Y2, we have to 

multiply the final result by: cos (45˚) * cos (26.565˚) * cos (−14.03˚)  

Each rotation authorizes a system gain which shows in the final computations. It indicates that it is valid to avoid the cos 

(фi) term of equation (3) and consider the system gain into calculation at the end of the whole algorithm. As we continue with 

the algorithm, the angle of rotation speedily becomes smaller. Finally, cos (фi) becomes equal to unity.  

For example, if iteration i = 6, then фi is equal to 0.895˚. I t makes the system gain or scaling factor of cos (0.895˚) = 0.99987.  

If the algorithm is made with more than six iterations, for the four precise significant figures, we can have the scaling factor:  

K = 0.6072 (6) 

Therefore, we can avoid the cos (ф) term of equation (3) and apply a scaling factor of 0.6072 at the end of the calculation. If 

higher accuracy is required for some special application, one can consider more significant figures for the scaling factor value. 

It is possible to avail at zero cost because, the scaling factor is generally saved as a constant value in the system. One can utilize 

an initial scaling factor due to the algorithm uses some prefixed angles in each iteration. 

 

Table 1 Angle set at every iteration 

Iteration (i) 𝐭𝐚𝐧−𝟏(𝟐−𝐢) ф˚ tan (ф˚) 

0 tan−1(1) 45˚ 1 

1 tan−1(1/2) 26.565˚ 1 / 2 

2 tan−1(1/4) 14.036˚ 1 / 4 

3 tan−1(1/8) 7.125˚ 1 / 8 

4 tan−1(1/16) 3.576˚ 1 / 16 

5 tan−1(1/32) 1.79˚ 1 / 32 

6 tan−1(1/64) 0.895˚ 1 / 64 

7 tan−1(1
/128) 

0.448˚ 1 / 128 

8 tan−1(1
/256) 

0.224˚ 1 / 256 

9 

..... 

tan−1(1
/512) 

0.112˚ 1 / 512 

 

At time of the first iteration, the vector makes the rotation by 45° counter clock-wise to achieve first position of the 

vector. Afterwards, all iterations will make the vector in rotation in one or the other direction by size decreasing steps until the 

achievement of desired angle has been finished. The value of Zi makes the decision about the direction of rotation of the 

CORDIC vector. It is also called angle accumulator. Here, di indicates +ve and –ve sign according to the angle. 

Zi = Zi – di * tan−1 (2−𝑖)  (7) 
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Finally, 

Xi+1 = Ki ∗ [Xi − Yi ∗ di ∗ 2−𝑖] (8) 

Yi+1 = Ki ∗ [Yi + Xi ∗ di ∗ 2−𝑖] (9) 

 

Zi = Zi – di * tan−1 (2−𝑖)  (10)  

 

The above iterative equations are worked for CORDIC algorithm.  

For efficient execution and implementation of the CORDIC algorithm on the FPGA is the crucial task. There are certain 

parameters are to be considered for the optimized implementation of CORDIC. There are various architectures are developed to 

optimize for the parameters such as high throughput, low latency, high accuracy and hardware complexity for FPGA 

implementation using VHDL. Among all the parameters the latency is the key issue in the CORDIC implementation. Here, we 

have reviewed some architectures which can serve for the latency bottleneck. 

III. CORDIC ARCHITECTURES 

There are several architectures are available for the efficient implementation of the CORDIC algorithm. 

A. Parallel Implementation 

In this implementation, a straight forward parallel implementation was considered. It was developed with the help of two 

shift register, a standard register, four adder/sub-tractors, a lookup table and a control unit. In this method, at the beginning, all 

these registers are loaded through the 2:1 multiplexer when INIT indicator is high. An INIT output by the control unit allows 

initial values to be loaded before computation begins. During the computation phase, the INIT signal is not asserted, allowing 

the output of the adders to be fed back into the registers. The control unit is responsible for regulating the flow of data through 

the CORDIC unit. The unit is a finite state machine having three states. The default state for the unit is the IDLE state. In this 

state, the registers are not loading, and the unit is stays in this state until the start signal is asserted. When the Start signal is 

asserted, the unit jumps into the PRELOAD state. In the PRELOAD state, the register load signal is asserted, and the INIT signal 

is also asserted, causing the initial values to be loaded into the registers. The unit then advances to the COMPUTE state. The 

register load signals remain asserted, but the INIT signal is not asserted. As a result, the registers are loaded with the values from 

the corresponding adders, rather than the input values. The unit maintains an internal iteration count, and when these values are 

equal, the control unit moves back into the IDLE state, with the DONE signal asserted, signifying that the values output by the 

registers are valid. In this paper, authors have given the tabular data of obtained output. Other signals, such as the look-up table 

address, SHAMT, and SUB signals vary and are continuously updated while in the COMPUTE state. The subtract signals 

SUBXY and SUBZ are determined by the sign of the Z register, since the CORDIC unit is operating in rotation mode. Therefore, 

the sign bit of the Z register is connected directly to the subtract inputs of the corresponding adders. The SHAMT register 

contains the shift amount, which also corresponds to the current iteration count, which is then connected to the X and Y registers. 

Since data from the look-up table takes one clock cycle to be retrieved, SHAMT is required to lag one cycle behind the ADDR 

signal, which is fed to the lookup-table. It is the content of the ADDR register that determines when a repeat iteration is necessary. 

There are two methods to designing a register. 

The easiest and most area-conscious is to perform a single one-bit shift per clock cycle and repeat as necessary until the 

value has been shifted by the desired amount. It is required that the shift be performed in one clock cycle. This can be 

accomplished used multiplexers. The SHAMT signal controls the amount by which the output is shifted. The shift register 

performs an arithmetic shift operation to ensure proper execution when negative values are used. In this work, the hardware 

complexity is minimized at the cost of latency. 

 

B. Serial Implementation 

In this serial implementation of CORDIC, a bit serial arithmetic logic along with one-bit adders is used to execute the 

CORDIC algorithm. The design requires far less of the FPGA’s resources, but will require more time to execute. The X, Y and 

Z registers are now standard one-bit shift registers with parallel load and parallel output capability. This keeps their internal 

logic simple and reduces area requirements. The adder/sub tractors are now reduced to operating on single-bit operands, which 

also reduce their complexity. The adders also contain a flip-flop that saves the carry output so that it can be applied to the next 

pair of operands. This allows the 32-bit addition to be performed one bit at a time. The multiplexer prevents any additional clock 

cycle delays from being introduced into the design. The control unit provides the address into the lookup table. This design uses 

32-bit word size, with 4 bits for the whole part of the number and 28 bits for the fractional part of the number. The subtract 

control signals that determine whether each adder is adding or subtracting could be evaluated in each clock cycle in parallel 

design, whereas in serial design these values need to be determined once at the beginning of the iteration and saved until the 

current value is fully computed. The IDLE and PRELOAD states remain unchanged. The IDLE state is active when the algorithm 

is not being executed. The PRELOAD state is used to load the initial values into the X, Y, and Z registers. The SETUP state is 

the new state and is only active in the very first clock cycle of each iteration. In the SETUP state, the values in the X, Y, and Z 

registers are evaluated to determine subtract and the sign signals. These signals are saved into registers for use during the 

remaining clock cycles of the current iteration. The COMPUTE state is active until all 32 bits have been computed. Once this 

happens, IDLE becomes the active state, otherwise if more iterations remain, the machine returns to the SETUP state to begin 

execution of the next iteration. 
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C. Hybrid CORDIC Architecture 

In this paper authors have proposed Hybrid CORDIC architecture to overcome a drawback of latency bottleneck of the 

conventional architecture. This paper introduces Verilog Hardware Description Language (HDL) implementation of CORDIC 

hybrid architecture and gives comparative analysis of it with parallel architecture. In CORDIC algorithm, the initial angle is 

dissolved into set of micro-rotations or elementary angles. These elementary angles are interpreted by arctangent constants, which 

can be called as an Arc Tangent Radix (ATR). Hybrid CORDIC algorithm can be accepted with the help of two architectures: 

Mixed hybrid and Partitioned Hybrid CORDIC architecture. In both the architectures the input angle θ, is split to introduce most 

and least significant part. Xilinx ISE Web pack 13.4 has selected for synthesizing and simulating behavior of parallel and hybrid 

architecture. 

Input angle is 30 degree or 0.5236 rad, which in 16- bit notation is converted as 0000100001100000. This angle when input 

to the CORDIC architecture, it generates output as sine and cosine of 30 degree. The simulation results, which is retrieved with 

the help of Xilinx ISE 13.4, for hybrid and parallel architecture respectively for clock frequency of 10MHz. Finish flag is utilized 

in the design to monitor total time required to stop simulation, thus, compare the total time required to complete the operation. 

In terms of accuracy, percentage of error for parallel CORDIC is 0.04 % (cosine) and 0.1 % (sine).  

However, for hybrid CORDIC, the same was recognized to be 0.2% and 0.5% respectively. Comparison of total simulation 

time and final value of cosine and sine has been retrieved from both architectures. Also the comparison has been created on the 

basis of resources used for synthesizing the respective CORDIC architecture. 

IV. COMPARATIVE ANALYSIS 

In this paper, three different implementation techniques of CORDIC algorithm are reviewed. Each implementation method 

has its own advantages and drawbacks for specific applications. Here, analysis of all three implementations are described below.  

In Parallel structure of CORDIC algorithm, with 31 iterations plus a PRELOAD cycle, the algorithm will take 32 clock 

cycles to complete. At the theoretical maximum clock frequency of 56.507 MHz, the unit will take 17.697 ns to compute the 

final value.  

In the case of a serial CORDIC system using n number of  iterations with a word size of w bits, the total execution time of 

the unit will be w*n+1 clock cycles. Each iteration will require w cycles to complete as the values are passed serially through 

the adders, and n total iterations are completed after the algorithm finishes. The PRELOAD state of the control unit adds another 

clock cycle of execution time. The added clock cycles are partially offset by an increase in clock frequency. This design, which 

performs 31 iterations, with a word size of 32 bits will take 993 clock cycles to complete. At the theoretical maximum clock 

frequency of 113.048 MHz, the unit will take 8.846 ns to compute the final value. 

The added execution time may prevent the serial architecture from being used in more time sensitive applications. For those 

applications, where speed of execution of CORDIC algorithm is important factor, the parallel design or a faster table based 

approach would be better suited. 

 

               Table 2 Hardware used in parallel method    Table 1 Hardware used in serial 

method 

                     
 

 However, the simplicity of the serial architecture results in less combinational logic delay which in turn allows for faster 

clock speeds. Table 1 and table 2 give the idea about the hardware utilization in the parallel and serial implementation of 

CORDIC algorithm. From the result analysis, it is clear that parallel structure requires more number of devices than serial 

CORDIC structure. 

So, in such applications where FPGA resource utilization is major concern, serial CORDIC must be preferred compared to 

parallel CORDIC. The serial CORDIC unit offers many advantages over the parallel CORDIC unit by operating only on single 

bits in a serial fashion, the complexity of the shift registers is reduced significantly. The size of the adders used in the design is 

also reduced since they only need to handle one bit at a time. Precision and accuracy are not sacrificed to achieve the reduction 

in resource utilization. 

In the hybrid CORDIC architecture, the two processors are introduced for make the architecture efficient. Hybrid architecture 

speed up the computation process and thus, resolves latency bottleneck. Though this architecture has faster execution, but this 

comes at the cost of accuracy and power. Apart from this, hybrid architecture requires less resources as compared to parallel 

architecture during synthesis phase which serves as an added advantage. 
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V. CONCLUSION 

CORDIC is a powerful algorithm, and a popular algorithm of choice when it comes to various Digital Signal Processing 

applications. Implementation of a CORDIC-based processor on FPGA gives us a powerful mechanism of implementing complex 

computations on a platform that provides a lot of resources and flexibility at a relatively lesser cost. 

After reviewing the above three CORDIC implementations we can say that if the latency is more important parameter to 

optimize  at the same time one has to compromise with the hardware complexity and vice versa. For better speed of execution is 

achieved with the use of parallel implementation but at the cost of more hardware utilization. On the other hand, for reduce 

hardware utilization the serial implementation is preferred with lower speed of execution. 

The hybrid CORDIC architecture is the better option to serve for latency issues as well as hardware complexity problem with 

poor accuracy and high power consumption. 
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