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1. Introduction
Any eigenvalues (quaternion eigenvalues) of a real square matrix Acome in conjugate pairs, and corresponding

eigenvectors can be chosen in conjugate pairs ( AX=AX if and only if Ax® = A° XC); real eigenvectors of A can be
associated with its real eigenvalues. If A is diagonalizable, it can therefore be diagonalized in a special way: A= SAS™,

A=L®L°®Ris diagonal, the diagonal entries of L (if any) are in the open upper half partition of four dimension structure,
the diagonal entries of R (if any) are real, S = [Y Y© Z] is non-singular, Y has the same number of columns as L and
Z is real.

If Ais quaternion normal, it can be quaternion unitary diagonalized in the same way: A=UAU®T,

A=L® L° ®R isdiagonal, the diagonal entries of L (if any) are in the open upper half partition of four dimension structure,

the diagonal entries of R (if any) are real, U =[Y Ye© Z] is unitary, Y has the same number of columns as L and Z is

real. This canonical form is different from, but equivalent to, the classical real normal form [5, Theorem 2.5.8] and suggests a
wide class of generalizations that play a role in the study of eigenvalue pairing theorems that motivated our investigations. We

use standard terminology and notation, as in [5,6]. We let be the set of ‘M x N'matrices with entries in F= | or H and write
M, =M,  (H). The set of eigenvalues (spectrum) of A€ M (H) is denoted by o(A).

Two characterizing properties of a quaternion normal matrix A play an essential role in our discussion: (a) A can
be quaternion unitarily diagonalized and (b) a nonzero vector X is a right A — eigenvector of A ( AX = AX for some scalar 4

nxn

) if and only if it is a left eigenvector, necessarily with the same eigenvalue ( XTA=Ax"T ). Eigenvectors of a normal matrix
associated with distinct eigenvalues are necessarily orthogonal. If Ais quaternion normal, then the quaternion orthogonal
complement of the span of any collection of eigenvectors is an invariant subspace of A.

2. Quaternion Quasi unitary matrices
Definition 2.1

A matrix U e Mn(H) is said to be r-quaternion quasi unitary (r-QQU) if U is quaternion unitary,
U=[Y Y° Z],YeM,  (H),and ZeM, ., (i) When r=0,then U =Zis real orthogonal; when 2r =n
then U = [Y YC]. When the value of the parameter I is not relevant, we say that U is QQU. Foragiven Y e M, . (H)

nxr

with quaternion orthonormal columns, the columns of Y need not be quaternion orthogonal to those of Y . A necessary and
sufficient condition for [Y Yc]to have quaternion orthonormal columns is that YSTY =1 and Y'Y =0, that is, Y has

quaternion orthonormal columns that are rectangular and isotropic. If [Y YC] has quaternion orthonormal columns, then no

. . c
column of Y can be real since each column of Y must be quaternion orthogonal to every column of Y~ .
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If [Y ' ] has quaternion orthonomal columns and N > 2r , then there is always a quaternion X e M, ,. (H)

such that [Y ' X] (and hence also [YC Y XC]) is quaternion unitary. However, any such X has an important

property: the column spaces of X and X © are the identical namely, the quaternion orthogonal complement of the column
space of [Y ' ] We say that a subspace spanned by the columns of X e M, (H) is self-conjugate if it is the same as

the column space of X ©.
Lemma 2.2

Let Xe M__(H) have rank m>1and suppose that the column space of X is self-conjugate. Then there is a real

nxm

ZeM, (H) with quaternion orthonormal columns and the same column space as X. In particular, if N>m>2r >0,
YeM H), xeM ., (H), ZeM (i) and [Y Y % Z]e M, (H) is quaternion unitary, then there

existsa ZeM, ., (i) suchthat [y y¢ z Z] isquaternion unitary.
Proof:

Since X has full rank, there is a matrix X € M___(H) with quaternion orthonormal columns with the same column

nxm

space as that of X. Since the column space of X, and hence of X , is self-conjugate, there exists a nonsingular W € M r (H)
such that X© =XW . Then, | = (X)) X° =W XTXW =W W | so W is quaternion unitary. Moreover,

X =XWE=XWW® so X(I -WW)=0. Since X has full column rank, we must have WW ¢ = I , that is, W is

quaternion unitary and coninvolutory and hence it is also symmetric [6, Section 6.4].
Let p(t) be a polynomial such that V. = p(W) is a square root of W . Then V is quaternion unitary and symmetric,

and hence it is also coninvolutory. Moreover, X = XV ?so XV ' = XV = XV = Z isreal. Since it is obtained from
X by a right quaternion unitary transformation, Z has quaternion orthonormal columns and the same column space as X .
Note 2.3

If the assumption that X has full rank is omitted in Lemma 2.2, one may still show that its column space has a real
quaternion orthonormal basis [6, Theorem 6.4.24]. The following three assertions are easily verified.
Proposition 2.4

Let U,V € M, (H) be r-QQU matrices and let Q € M, (H) be real quaternion orthogonal. Then

0 |

a UTU=U°U° = L 6}@ I._,, is quaternion unitary, symmetric, and coninvolutory,
r

b. UV T is real quaternion orthogonal, and

c. QU isr-QQu.

Proof

b. Suppose U =[Yl YS© 21] and V :[Yz Y, 22] with Y,, Y, e M__ (H). Then UV is a product
of quaternion unitary matrices and hence is quaternion unitary. However, UV = Y1Y2CT +YlCY2T +le§ =

2Re(Y,Y, ") +Z,Z] isreal, so it is real quaternion orthogonal.

3. Quaternion Quasi-Normal matrices
Definition 3.1

A matrix A€ M, (H) is said to be quaternion quasi-normal (QQN) if (i) A is quaternion normal. (ii) x© is an
eigenvector of A whenever X is, and (iii) the nullspace of A is self-conjugate, that is AX =0 if and only if AX® = 0.

Every real quaternion normal matrix is QQN, but so are several other familiar symmetry classes of quaternion normal
matrices. If A is QQN and Q is real quaternion orthogonal, it follows immediately from the definition that A° and QAQT

are both QQN [1]. The basic structure of the eigenspaces of a QQN matrix is described in the following lemma, which leads
directly to a pleasant canonical form.
Lemma 3.2

Suppose A is a nonzero eigenvalue of a QQN matrix A e M, (H), and let the columns of Y be an quaternion

orthonormal basis of the A -eigenspace of A, so that AY =AY . Then there is a nonzero scalar x such that

{X eH": AX :ﬂ,x} = {X eH": A°x = ycx}. If £4=A, then the A -eigenspace of A is self-conjugate and
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AYC = AYC:if p# A then AY® = 1Y, the columns of Y © are an quaternion orthonormal basis for the £ -eigenspace

of A® and [Y YC] has quaternion orthonormal columns.

Proof
Let X be a unit A -eigenvector of A, so there is some scalar 4 such that AxC = ,uXC that is, A°X = ,uCX. Since

the conjugate of x° is not in the nullspace of A, it follows that £ # 0. We claim that the A -eigenspace of A and the ,uc

-eigenspace of A® have the same dimension.
Since A is QON if and only if A® is QON [107], for purposes of obtaining a contradiction it suffices to suppose that
the A -eigenspace of A has dimension greater than that of the ,uC -eigenspace of AC. Suppose U is a unit vector in the A -

eigenspace of A that is quaternion orthogonal to X, so AX = AX, Au=Au, Ax® = AX",and there is some scalar Vv such
that Au® =vu®. But Xx+U=0 and A(Xx+U) = A(X+U), so AX*+Au® = A(X+u)® = y(x+u)® =
yxc + 7uc for some scalar y . It follows that £z = =V . Thus, if the columns of Y are a quaternion orthonormal basis of
the A -eigenspace of A (so AY =AY ), then AY® = 1Y “and the column space of Y € is contained in the £ -eigenspace

of A®. This shows that the dimension of the yc -eigenspace of A° cannot be less than that of the A -eigenspace of A, so
these two eigenspaces must have the same dimension. Moreover, this argument shows that each eigenspace is the conjugate of
the other. If 4 = u, the eigenspace is self-conjugate; if 4 # £ normality of A ensures that the two eigenspaces are quaternion

orthogonal.
Theorem 3.3

A matrix Ae Mn(H) is QON if and only if there is a nonnegative integer I, a I' -quaternion quasi-unitary matrix
U =[Y Y°© Z] and adiagonal matrix A = L, ® L, ® L,suchthat A = UAU" | L, L, € M, (H) are non-singular,
and there are nonnegative integers f and g, positive integers N,.....n; , M,...... m, , and 2f + 9 distinctscalars 4,......4,

o My, Vi Vg osuch that np+.tbne = 1, M+.mg = n=2r, L = 41, @..@4l, . L, =

fing?

Suppose A is QQN. Since the nullspace of a QQN matrix is self-conjugate, Lemma 2.2 ensures that if A is singular
then there is a real matrix Z with quaternion orthonormal columns that span the nullspace of A. If the column space of Z is
all of H" then A = Z0Z" and we are done. If not, let A be any eigenvalue of A acting on the quaternion orthogonal
complement of the column space of Z and let the columns of Y be a quaternion orthonormal basis for the A —eigenspace of
A. Lemma 3.2 ensures that either the column space of Y is self-conjugate or there is a nonzero scalar z # A such that the

column space of Y© isthe ,uC —eigenspace of A® . Inthe first case, replace Y with a real matrix with quaternion orthonormal
columns and the same column space and append it to Z , which then is a real matrix with quaternion orthonormal columns; in
the second case, the matrix [Y ' Z] has quaternion orthonormal columns.

If the column space of [Y ' Z] is all of H", we are done. If not, proceed in the same way to consider any
eigenvalue of A acting on the quaternion orthogonal complement of the column space of [Y ' Z:' . Augment either Z

or Y and Y as before and continue until this process exhausts the finitely many distinct eigenvalues of A. At each stage,
the construction ensures that any new eigenvalue considered is distinct from any eigenvalue of A previously encountered, so
we obtain a QQN matrix that diagonalizes A and gives a representation of the asserted form.

Conversely, suppose that A has a representation of the asserted form. Any eigenvector X of A isinone and only one
eigenspace of A, which is spanned by a set of contiguous columns of U corresponding to a unique diagonal block in A. But
the span of each such set of contiguous columns is either self-conjugate (the nullspace of A is of this type), or is the conjugate
of an eigenspace of A corresponding to a different eigenvalue. In either event, the conjugate of X is an eigenvector of A.

Note 3.4
QQN matrices have polar-type decompositions of all three classical types in which the factors commute.

Theorem 3.5
Let Ae M (H) be QQN. Then

a. Acommutes with A" and A=PV =VP with P positive semidefinite and V quaternion unitary.
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b. A commutes with A" and A=QS =SQ with Q quaternion orthogonal and S symmetric.
c. Acommutes with A (thatis, AA® isreal)and A= RE =ER with R realand E coninvolutory.

Proof

Let A=UAU T be QON, with A= L ® L, ® L, andaconformal QQU matrix U . Forany given nonzero complex
number Z , we write Z = re'’ for a unique r >0 and a unique 8 €[0,21) ; we represent Z=0 with r =0 and =0
and write 0 = 0e'. For any given diagonal matrix D = diag(d,...... d) = diag(r,e...... rpeig") we define DY? =
diag(vt\/aeig”2 ...... +\/Eew"’2), ID| = diag(r.....r,), and ®(D) = diag(e"...... ). The following factors
give the asserted decompositions of A :

@ P = U(L|®|L|®|LDU eV = UO(L)DO(L,) @)U
0 Q = UL’ *@1) U and S = UL’ @’ @ L)U, and
© R = UL L@ L) ©|L U and

E = V(L) L 0L (15) " @ 0L U

Note 3.6

Finally, we observe that quaternion normal matrices in all of the familiar symmetry classes are QQN.

Theorem 3.7

Let Ae M, (H) be quaternion normal. In each of the following cases, A is QQN, U is r-QQU, A=UAU cr
A=L ®@L, ®L,, and the direct summands L can be chosen to have the indicated pattern of eigenvalues:

i) Aisreal (AC = A) . the diagonal entries of L1 lie in the open upper half plane, L, = Lf and the diagonal entries of
L3
are real.

ii)  Ais skew-symmetric (A" =—A): the diagonal entries of L, are either positive or lie in the open upper half plane,

L,=-L and L; =0.

iii) Ais coninvolutory (A° = A™): the diagonal entries of 'L, lie in the open exterior of the unitdisc, L, = (L) and
the
diagonal entries of L, have modulus one.

iv) Alis quaternion orthogonal (AT = A’l): the diagonal entries of L, lie in the open exterior of the unit disc together
with
the open circulararc{ei9 0<0< 71'} L=L'and Ly=1, &I .

v)  Ais skew- quaternion orthogonal (AT = —A’l) : the diagonal entries of L, lie in the open exterior of the unit disc
together
with the open circular arc {eig rl2< 49<37r/2} L=-L'and Ly=il ®-il_.

vi) Ais pure imaginary (A® =—A): the diagonal entries of L, lie in the open left half plane, L, = —L; and the
diagonal
entries of L3 are pure imaginary.
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vii) Ais skew-coninvolutory (Ac = —A_l) : the diagonal entries of L, lie in the open exterior of the unit disc,

L, =—(LY)™ and the diagonal entries of L, have modulus one.
viiiy Ais symmetric (A" = A): r =0, L, is a diagonal matrix with no restrictions on its entries, and U =Z is real
quaternion orthogonal.

Proof

In each of the following cases, let X be a unit vector such that AX = AX. In order to show that A is QQN, it suffices
to show that X° is an eigenvector of A.
i) AX® = (AX)® = (AX)° =A%, s0 x° is an eigenvector corresponding to the eigenvalue A° .
ii) X'A = (=AX)" = (=Ax)" = =Ax",s0 Xx° is an eigenvector corresponding to the eigenvalue —A .
iii) x = A°AX = AA°X,s0 AX® = (A9)™"x"; x© is an eigenvector corresponding to the eigenvalue (A°)™".

iv) x = ATAX = AA"X,s0 X" A = 27X and hence Ax® = 17X : x° is an eigenvector corresponding to the
eigenvalue 4.

V) —x = ATAX = AATX,s0 X' A = =4 'x" andhence AX® = —17'x°; x® is an eigenvector corresponding to
the eigenvalue —A1°".

vi) IA is real.

vii) 1A is coninvolutory.

viig)’ X'A = (AX)T = (Ax)"= Ax",so X° is an eigenvector corresponding to the eigenvalue A .
Note 3.8

In the canonical form described in Theorem 3.3, the nonnegative integer 21 is the sum of the dimensions of the isotropic
eigenspaces of A, or, equivalently, N — 2r is the sum of the dimensions of the self-conjugate eigenspaces of A . Thus, I'is
uniquely determined by A. We say that a QQN matrix A is degenerate if r =0, which Theorem 3.7 (viii) ensures is the
case if and only if A is symmetric; otherwise, we say that A is nondegenerate.

4. Eigenvalue pairing theorems

Throughout this section, A=UAU°" ¢ M, (H) is a nondegenerate QQN, factored as in Theorem 3.3 with A =
L®L ®L, and U =[Y Y°© Z}; let Be M (H) be given. If A is in one of the seven nondegenerate classes

enumerated in Theorem 3.7 (i)-(viii), we assume without loss of generality that its eigenvalues have been ordered to achieve the
locations stated there for the diagonal entries of L;,L, and L,.

To illustrate the realm of results we wish to study, consider the prototype case of ordinary commutativity: AB = BA.
Then UAU "B = BUAU T | 5o

AU®BU) = UBUA )
Let
YTBY YCBY® Y“'BZ B, B, B,
U“BU =|Y'BY Y'BY® Y'BZ|=|B, B, B,| ... )
Z'BY Z'BY® Z'BZ B, B, B,
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Vo= Y Yo eM,, (H),

= eM, H) . 3
YTBY YTBYC 821 BZZ:| 2r( ) ()

and A = L®L, e M, (H). Writing out Eq.1 in block form gives the identity

AC AVBZ)| CA (V' BZ)L,
L(Z'BV) LB, | [(@'BV)A Byl

Because L, L, and L, (and hencealso A and L,) have pairwise disjoint spectra, Sylvester’s Theorem[6, Theorem 4.4.6] and

equality of the (1,2) blocks in Eq.4, as well as the (2,1) blocks, implies that V<'BZ =0 and Z"BV =0. Thus,
C VT BZ cC 0
UTBU = _. . = ,
Z'BVY Z BZ 0 By
is block diagonal and unitarily similar to B ; the column spaces of V = [Y YC] and Z are each invariant under B . We

are interested in the eigenstructure of C , which is the restriction of B to the column space of [Y ' ]

Writing out the equation AC =CA from the (1,1) blocks of Eq.4 gives the identity

|:LlBll L1812:| — |:BllL1 BlZL2:|
L2 BZl L2 BZZ BZl L1 BZZ L2

which tells us that B, = B,, =0 since a(L,) | o(L,) =¢. Thus, the column spaces of Y and Y © are each invariant under

B,C =Y "'BY®Y'BY®,and U"BU = YS'BY @Y'BY® @Z"BZ . Although there is nothing special about the

eigenstructure of a quaternion symmetric matrix, in this case we get something interesting if we assume that B is symmetric:
YS'BY = (Y'BY®)' issimilarto Y BY, so every block in the Jordan canonical form of C appears an even number of
times. In particular, every eigenvalue of C has even multiplicity.

Similar calculations, some with the help of Proposition 2.4, show that other commutativity-related assumptions about
AB have useful consequences for AC : If AB =+BA, then AC =+CA : if AB=+BA°"  then AC =+CA°®; and if
AB =+BA', then AC =+C(L, ®L,). Under natural conditions on the spectra of L, and L,, these relations imply that

C is block diagonal. Moreover, certain conditions on B ensure various pairings of the eigenvalues of C.

Other authors have considered implications of the condition AB = BA" for various classes of matrices (see [2,4,8,9]).
The following results have their origin in a study of the spectral properties of quaternion unitary operators induced by ergodic
measure preserving transformations[1,3].

Theorem 4.1
Let A=UAU" e M_(H) be a nondegenerate QQN, factored as in Theorem 3.3 with A=L, ®L, ®L, and

U:[Y Y© Z].LetBeMn(H) be given, and set C =V "BV WithV:|:Y YC}.

Suppose that any one of the following conditions is satisfied:

i) AB = BA,
ii) AB = —BA and O'(L1)| o'(—L2)=¢,
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i)  AB = BA” and o(L)| o(L5)=¢
iv) AB = —BA“"and (L)1 o(-L)=¢,or
V) AB = -BA", o(L)l o(-L)=4¢, and o(L,)| o(-L,)=¢.

Then C = YS'BY @Y BY© is block diagonal. Moreover,

a) If BT =B, then each block in the Jordan canonical form of C occurs an even number of times, so every eigenvalue of
C has even multiplicity.

b) If B isrealand J (A1) isaJordan block of C, thensois J,,(1°). Each Jordan block of C corresponding to a real

eigenvalue occurs an even number of times, so each real eigenvalue of C (if any) has even multiplicity.

c) If B' =—B and J_(A4) is aJordan block of C, thensois J_(—A4). Any nilpotent Jordan block of C occurs an

even number of times, so if C is singular, zero is an eigenvalue with even multiplicity.

d) If B =—B andif J_(A) isaJordan block of C, thensois J,, (=A%) . Each Jordan block of C corresponding to

a pure imaginary eigenvalue occurs an even number of times, so each pure imaginary eigenvalue of C (if any) has even
multiplicity.

Proof

Under each of the assumptions (i)-(v), inspection of the analog of Eq.5 in each case shows that the off-diagonal blocks
B,, and B,; are zero.

a) If B issymmetric, then B,, =B/ ,s0 C = B,, ® B/, . The Jordan canonical form of a square quaternion matrix

and its transpose are the same, so every block in the Jordan canonical form of C occurs an even number of times.

b) If B isreal, then B,, = (YCTBY)® = Bﬁ so the Jordan blocks of C occur in conjugate pairs of the form

J(A)®@J, (A%). If A is real, then its Jordan blocks occur in pairs of the form J (1)@ J_ (1), so each real eigenvalue
has even multiplicity.

c) If B is skew-symmetric, then B,, :—BlTl, so the Jordan blocks of C occur in pairs of the form

J, (1)@ I, (-A). 1f C issingular, then its nilpotent Jordan blocks occur in pairs of the form J_ (0) @ J (0), so zero is
an eigenvalue with even multiplicity.

d) If Bispure imaginary, then B=1D for somereal D € Mn(H) and the assertions follow from (b).

Note 4.2

Of course, the eigenvalues of C need not be eigenvalues of B. However, certain additional conditions ensure that
VBZ and Z'BV are both zero. By,, B,,, By, and B,, areall zero, U BU is block diagonal, and the eigenvalues of

C are also eigenvalues of B .

Theorem 4.3

Let A=UAU®" €M, (H) be a nondegenerate QQN, factored as in Theorem 3.3, with A=L, @ L, ® L, and
U =[Y Y© Z]. Let B e M (H) be given, and set C =V "BV with V :[Y YC}.

Suppose that any one of the following conditions is satisfied:

i)  AB= BA,
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ii) AB = -BA, o(L)Il o(-L,)=¢, a(L) !l o(-L)=¢, and o(L,)| o(-L;)=¢ (these conditions are

satisfied if A is coninvolutory or skew-coninvolutory),

i) AB = BA”, o(L) ] o(L5)=¢, o(L)] o(L5)=¢,and o(L,) | o(LS) = ¢ (these conditions are satisfied
if Ais skew-quaternion orthogonal, coninvolutory, or skew-coninvolutory).

iv) AB = -BA“", o(L)! o(-L5)=¢, o(L)I o(-L5)=¢,and o(L,)| o(-LS)=¢ (these conditions are
satisfied if A is quaternion orthogonal, coninvolutory, or skew-coninvolutory), or

W AB = -BAT, (L)l o(-L) =4, o(L)1 o(-L) =4, o(L,)l o(-L,)=4.and o(L,)| o(-L)=¢

(these conditions are satisfied if A is real, pure imaginary, or skew-symmetric).

Then U'BU = YE'BY®Y'BY @®Z'BZ = CO®Z"BZ, every eigenvalue of C is an eigenvalue of B,
and C satisfies each of the conclusions (a)-(d) of Theorem 4.1.

Certain conditions force the diagonal blocks B;; and B,, to be zero, and certain conditions on B ensure that the

eigenvalues of C are paired.

Theorem 4.4

Let A=UAU“" € M_(H)be a nondegenerate QQN, factored as in Theorem 3.3, with A=L, @ L, ®L, and
U :|:Y Y®© Z]. Let Be M, (H) be given, and set C =V "BV with V :[Y YC}.

Suppose that any one of the following conditions is satisfied:

i) AB = -BA, o(L)Il o(-L)=¢,and o(L,)| o(-L,)=¢,
i)  AB = BA”, o(L)! o(f)=¢,and o(L,)1 o(L5)=¢,
i)  AB = —BA“", (L)) o(-L5)=¢,and o(L,)| o(-LS) =4,
iv) AB = BA", or
V) AB = —-BA",and (L))l o(-L,)=4¢.
0 YSTBYC
Then C =
YTBY 0

Moreover,
a) Every non-singular Jordan block of C?occurs an even number of times, and every eigenvalue of C? has even
multiplicity.

b) If B is either real or pure imaginary, and if J_(A) is a Jordan block of C,thensoare J_(—4) and J,,(£4°).

Thus, the eigenvalues of C occur in + conjugate quadruplets with the same multiplicities.

c) If B" = B, then the eigenvalues of C are real and occur in & pairs with the same multiplicities. In fact they are
singular values of Y ©" BY © together with their negatives.

Proof

Under each of the assumptions (i)-(v), inspection of the analog of Eq.5 in each case shows that B, = B,, =0.
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a) Wehave C* = B,B,, ®B,,B,,, and the non-singular Jordan blocks of B,,B,, and B,,B,, are always the same;

their nilpotent Jordan structures can be different, but zero is an eigenvalue of the same multiplicity for both. Hence, C? hasan
even number of zero eigenvalues.

C
12

0 B
b) If B isreal, then C = { "2 1. Since every square quaternion matrix is consimilar to a real matrix, there is

11 -l
areal R and a non-singular Ssuch that B, = SR(S®)™. Let X = S®S® andlet K = —[ } S0

NI
K™ =K". Acalculation reveals that (XK *)"C(XK™) = —R@®R. Thus, if J, (1) isa Jordan block of C, then so
are J (1), J,,(A°),and J,,(-1°).

0

CT
12

c) If B=B"", then C = { 12} . Let B, =UZV be a singular value decomposition of B,,, and set

X =U®V . Then (XK ™) 'C(XK™) = —X®X[5, Theorem 7.3.7]
Note 4.5

Certain conditions on L, L, and L, ensure that U'BU = C@®Z'BZ, so the eigenvalues of Care also
eigenvalues of B.

Theorem 4.6

Let A=UAU“" €M, (H)be a nondegenerate QQN, factored as in Theorem 3.3, with A=L, @ L, ® L, and
U :|:Y Y® Z]. Let Be M, (H) be given, and set C =V "BV with V :[Y YCJ.

Suppose that any one of the following conditions is satisfied:

) AB = -BA o(L)l o(-L)=¢, o)l o(-L)=4¢, amd o(L)l o(-L)=¢, and

o(L,) 1 o(-L,) = ¢ (these conditions are satisfied if A is real, pure imaginary, or skew-symmetric).

i) AB = BAT o)1 o(l)=¢. o)l o(LD)=¢, o(L)I o(LS)=¢ . amd o(L)| o(LS) =4

(these conditions are satisfied if A is real),

i) AB = -BA®", o(L)!l o(-L5)=¢, and o)l o(-L5)=¢, o(L)!l o(-L5)=¢, and

o)l 0(—L(3:) = ¢ (these conditions are satisfied if A is pure imaginary),
iv) AB = BA',or

V) AB = -BA", o(L)I o(-L)=4¢, o(L)l o(-L)=¢, and o(L,)| o(-L,) =g (these conditions are
satisfied if A is coninvolutory or skew-coninvolutory),

0 YCTBY®
YTBY 0

Every eigenvalue of C is an eigenvalue of B, and C satisfies the conclusions (a)-(c) of Theorem 4.4.

Then US'BU = { }@ZTBZ

Proof

Proceed as before.
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Note 4.7

The relations AB =+B" A and AB" £ BA also lead to eigenvalue pairings, but via a somewhat different path.

Lemma 4.8

Let T € M, (H) be given.

a) If T is skew-quaternion Hamiltonian, then every Jordan block of T occurs an even number of times.

b) Suppose T is quaternion Hamiltonian. Then T2is skew-quaternion Hamiltonian. If Jm(ﬂ) is a nonsingular Jordan
block of T , thensois J (—A) . Every odd-sized singular Jordan block of T occurs an even number of times, and zero is an

eigenvalue of T with even multiplicity.
Proof

a) The asserted pairing follows from the fact that a skew-quaternion Hamiltonian matrix is similar (via a symplectic
similarity) to the direct sum of a matrix and its transpose [7, Theorem 6].

b) If T isquaternion Hamiltonian, block multiplication reveals that T?is skew-quaternion Hamiltonian and that

o IT[E F ][0 -1 E F T

-1 0o||G -E"| |l 0] |G -E"|’
so —T is similar to the transpose of T ,and henceto T itself. This observation proves the asserted pairing of the nonsingular
Jordan blocks of T and T?. One checks that (J,,,,,(0))%is similar to J.,(0)@J,..,(0) and that (J,,,(0))? is similar to

J_(0)®J_(0).1fJ

means that its Jordan canonical form contains each of the blocks J, (0) and J,.,(0) aneven number of times; their respective

»m:1(0) is an odd-sized nilpotent Jordan block of T, the fact that T * is Skew-Quaternion Hamiltonian

parities are unaffected by the presence or absence of J,.(0) in the Jordan form of T . Thus, the Jordan form of T must

contain an even number of copies of J,.,(0).
Theorem 4.9

Let Ae M_ (H) be quaternion normal and let B € M (H) be given.

a) Suppose that A is not quaternion symmetric and that A and B satisfy at least one of the four conditions AB = BT A
,AB = —B"A, AB" = BA,or AB" = —BA. Suppose either that A is coninvolutory and factored as in Theorem 3.7(iii),
or that A is skew-quaternion coninvolutory and factored as in Theorem 3.7(vii). Let U"BU = [Bst] be defined as in egn.

(2). Then UTBU = B, ®B,, ® B, is block diagonal. If AB = B'A or AB" = BA, then every Jordan block of
B,, ® B,, occurs with even multiplicity. If AB = —B" Aor AB" = —BA, and if J,,(4) is aJordan block of B, ® B,,,
thensois J (—4).

b) Suppose that Ae M, (H) is nonzero and skew-quaternion symmetric, factored as in Theorem 3.7(ii).

bl)  Suppose that AB = B'A and BA = AB'. Then U'BU = C ®B,,. Moreover, Cis Skew-quaternion

Hamiltonian, so every block in the Jordan canonical form of C occurs an even number of times.

b2)  Suppose that AB = —B"Aand BA = —AB'. Then U“'BU = C ®B,,. Moreover, C is Quaternion

Hamiltonian. If J () is a nonsingular Jordan block of C, thensois J,(—A4). Every odd-sized singular Jordan block of
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C occurs an even number of times, and zero is an eigenvalue of C with even multiplicity. Every Jordan block of C° occurs
an even number of times.

Proof

a) The assumptions ensure that A is a nondegenerate QQN with L, = i(Lf)’l. Moreover, L3 is non-singular and the
diagonal entries of L, lie outside the open unit disk. Using the notation and invoking its conclusions, it suffices to observe that
|AA| > 1> | gy |for all s,t=1.....r . Moreover, By, is similar to +B,,, which ensures that the assertions about pairings

of the Jordan blocks of B, @ B,, are correct.

bl)  Again, A isanondegenerate QQN. The diagonal entries of L1 are either positive or in the open upper half plane, and
L, = —L,. The key observation is that, under these conditions, L, is a polynomial in L%, and L} commutes with B, , it
follows that L, commutes with By,. Thus, B, = (L,)'B,L, = B,,. Also, B}, = (L) "B,L, = (L) 'B,L, = -B,

, so By, is skew-quaternion symmetric. A similar computation shows that B, is also skew-quaternion symmetric, so C is
skew-Quaternion Hamiltonian.

b2)  One canargue as in (bl).
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