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1.  Introduction 

 Any eigenvalues (quaternion eigenvalues) of a real square matrix A come in conjugate pairs, and corresponding 

eigenvectors can be chosen in conjugate pairs ( Ax x=  if and only if 
C C CAx x= ); real eigenvectors of  A can be 

associated with its real eigenvalues.  If  A is diagonalizable, it can therefore be diagonalized in a special way: 
1,A SAS −=

CA L L R=    is diagonal, the diagonal entries of L  (if any) are in the open upper half partition of four dimension structure, 

the diagonal entries of R (if any) are real, [ ]CS Y Y Z=  is non-singular, Y  has the same number of columns as L and 

Z is real. 

 If A is quaternion normal, it can be quaternion unitary diagonalized in the same way: ,CTA UAU=  

CA L L R=    is diagonal, the diagonal entries of L  (if any) are in the open upper half partition of four dimension structure, 

the diagonal entries of R (if any) are real, [ ]CU Y Y Z=  is unitary, Y  has the same number of columns as L and Z is 

real.  This canonical form is different from, but equivalent to, the classical real normal form [5, Theorem 2.5.8] and suggests a 

wide class of generalizations that play a role in the study of eigenvalue pairing theorems that motivated our investigations.  We 

use standard terminology and notation, as in [5,6].  We let be the set of m n matrices with entries in F= ¡  or   and write 

( )n n nM M   .  The set of eigenvalues (spectrum) of ( )nA M   is denoted by ( )A . 

 Two characterizing  properties of a quaternion normal matrix  A  play  an essential role in our discussion:  (a)  A can 

be quaternion unitarily diagonalized and (b)  a nonzero vector x  is a right  − eigenvector of A ( Ax x=  for some scalar 

) if and only if it is a left eigenvector, necessarily with the same eigenvalue (
CT CTx A x= ).  Eigenvectors of a normal matrix 

associated with distinct eigenvalues are necessarily orthogonal.  If A is  quaternion normal, then the quaternion orthogonal 

complement of the span of any collection of eigenvectors is an invariant subspace of A . 

 

2.  Quaternion Quasi unitary matrices 

Definition 2.1 

 A matrix ( )nU M  is said to be r-quaternion quasi unitary (r-QQU) if U is quaternion unitary, 

[ ]CU Y Y Z= , ( )n rY M   , and 2 ( )n n rZ M  − ¡   When 0r = , then U Z= is real orthogonal; when 2r n=  

then 
CU Y Y =   .  When the value of the parameter r is not relevant, we say that U  is QQU.  For a given ( )n rY M    

with quaternion orthonormal columns, the columns of Y need  not be quaternion orthogonal to those of 
CY .  A necessary and 

sufficient condition for 
CY Y   to have quaternion orthonormal columns is that 

CTY Y I= and 0TY Y = , that is, Y has 

quaternion orthonormal columns that are rectangular and isotropic.  If 
CY Y    has quaternion orthonormal columns, then no 

column of  Y can be real since each column of  Y must be quaternion orthogonal to every column of 
CY . 
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 If  
CY Y   has quaternion orthonomal columns and 2n r , then there is always a quaternion 2 ( )n n rX M  −   

such that [ ]CY Y X  (and hence also [ ]C CY Y X ) is quaternion unitary.  However, any such X has an important 

property:  the column spaces of X  and 
CX are the identical namely, the quaternion orthogonal complement of the column 

space of  
CY Y   .  We say that a subspace spanned by the columns of ( )n mX M    is self-conjugate if it is the same as 

the column space of  
CX . 

Lemma 2.2  

  Let �̂� ( )n mM  
 
have  rank 1m and suppose that the column space of �̂� is self-conjugate.  Then there is a real 

( )n mZ M    with quaternion orthonormal columns and the same column space as �̂�.  In particular, if 2 0n m r   , 

( )n rY M   , �̂� 2 ( )n m rM  −  ,         𝑍 ( )n n mM  − ¡ , and 
C

Y Y  �̂� 𝑍] ( )nM   is quaternion unitary, then there 

exists a 2 ( )n m rZ M  − ¡  such that   [𝑌 𝑌𝐶   𝑍 𝑍 ̃]  is quaternion unitary. 

Proof: 

 Since �̂� has full rank, there is a matrix ( )n mX M    with quaternion orthonormal columns with the same column 

space as that of  �̂�.  Since the column space of  �̂�, and hence of X , is self-conjugate, there exists a nonsingular ( )rW M 

such that 
CX XW= .  Then, ( )C CT CI X X=

CT CTW X XW=  
CTW W= , so W is quaternion unitary.  Moreover, 

C C CX X W XWW= = , so ( ) 0CX I WW− = .  Since X  has full column rank, we must have 
CWW I= , that is, W is 

quaternion unitary and coninvolutory and hence it is also symmetric [6, Section 6.4]. 

 Let ( )p t be a polynomial such that ( )V p W  is a square root of W .  Then V is quaternion unitary and symmetric, 

and hence it is also coninvolutory.  Moreover, 
2CX XV= so 

1C C CX V X V XV Z− = =   is real.  Since it is obtained from 

X  by a right quaternion unitary transformation, Z  has quaternion orthonormal columns and the same column space as X .   

Note 2.3 

 If the assumption that �̂�  has full rank is omitted in Lemma 2.2, one may still show that its column space has a real 

quaternion orthonormal basis [6, Theorem 6.4.24].  The following three assertions are easily verified. 

Proposition  2.4  

 Let , ( )nU V M 
 
be r-QQU matrices and let ( )nQ M  be real quaternion orthogonal.  Then 

a.  2

0

0

rT CT C

n r

r

I
U U U U I

I
−

 
= =  

 
 is quaternion unitary, symmetric, and coninvolutory,  

b.  
CTUV  is real quaternion orthogonal, and  

c.  QU  is r-QQU. 

 

Proof 

 b.  Suppose 
1 1 1

CU Y Y Z =    and 
2 2 2

CV Y Y Z =    with 1Y , 2 ( )n rY M   .  Then 
CTUV  is a product 

of quaternion unitary matrices and hence is quaternion unitary.  However, 
CTUV  =  

1 2 1 2 1 2

CT C T TYY Y Y Z Z+ +   =  

1 2 1 22 Re( )CT TYY Z Z+  is real, so it is real quaternion orthogonal. 

 

3.  Quaternion Quasi-Normal matrices 

Definition 3.1 

 A matrix ( )nA M   is said to be quaternion quasi-normal (QQN) if (i)  A  is  quaternion normal.  (ii)  
Cx  is an 

eigenvector of A  whenever x  is, and (iii)  the nullspace of A  is self-conjugate, that is 0Ax =  if and only if 0CAx = . 

 Every real quaternion normal matrix is QQN, but so are several other familiar symmetry classes of quaternion normal 

matrices.  If A  is QQN and Q is real quaternion orthogonal, it follows immediately from the definition that 
CA and 

TQAQ  

are both QQN [1].  The basic structure of the eigenspaces of a QQN matrix is described in the following lemma, which leads 

directly to a pleasant canonical form. 

Lemma 3.2  

 Suppose   is a nonzero eigenvalue of a QQN matrix ( )nA M  , and let the columns of Y  be an quaternion 

orthonormal basis of the  -eigenspace of A , so that AY Y= .  Then there is a nonzero scalar   such that 

 :nx Ax x =   =   :n C Cx A x x = .  If  = , then the   -eigenspace of A  is self-conjugate and 
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C CAY Y= ; if    , then 
C CAY Y= , the columns of 

CY  are an quaternion orthonormal basis for the 
C -eigenspace 

of 
CA  and 

CY Y    has quaternion orthonormal columns. 

Proof 

 Let x  be a unit  -eigenvector of A , so there is some scalar   such that 
C CAx x= that is, 

C CA x x= .  Since 

the conjugate of 
Cx  is not in the nullspace of  A , it follows that 0  .  We claim that the  -eigenspace of A  and the 

C

-eigenspace of 
CA  have  the same dimension. 

 Since A  is QQN if and only if  
CA  is QQN [10], for purposes of obtaining a contradiction it suffices to suppose that 

the  -eigenspace of A  has dimension greater than that of the
C -eigenspace of 

CA .  Suppose u is a unit vector in  the  -

eigenspace of A  that is quaternion orthogonal to x , so ,Ax x=  ,Au u=  ,C CAx x= and  there is some scalar v such 

that 
C CAu vu= .  But 0x u+   and ( )A x u+   =  ( )x u + ,  so 

C CAx Au+   =  ( )CA x u+  =  ( )Cx u +   =  

C Cx u +   for some scalar  .  It follows that v = = .  Thus, if the columns of  Y  are a quaternion orthonormal basis of 

the  -eigenspace of A  (so AY Y= ), then 
C CAY Y= and the column space of 

CY  is contained in the
C -eigenspace 

of 
CA .  This shows that the dimension of the 

C -eigenspace of 
CA cannot be less than that of the -eigenspace of A , so 

these two eigenspaces must have the same dimension.  Moreover, this argument shows that each eigenspace is the conjugate of 

the other.  If  = , the eigenspace is self-conjugate; if    normality of A  ensures that the two eigenspaces are quaternion 

orthogonal. 

Theorem 3.3 

 A matrix ( )nA M   is QQN if and only if there is a nonnegative integer r , a r -quaternion quasi-unitary matrix 

CU Y Y Z =   ,  and a diagonal matrix A  = 1 2 3L L L  such that A  =  
CTUAU , 1 2, ( )rL L M   are non-singular, 

and there are nonnegative integers f  and g ,  positive integers 1...... fn n , 1...... gm m , and 2 f g+  distinct scalars 1...... f 

, 1...... f  , 1...... gv v  such that 
1 ...... fn n+ +  =  r , 1 ...... gm m+  =  2n r− ,  1L  =  

11 ......
fn f nI I   , 2L   =  

11 ......
fn f nI I    and 3L  =  

11 ......
gm g mv I v I  . 

Proof  

 Suppose A  is QQN.  Since the nullspace of a QQN matrix is self-conjugate, Lemma 2.2 ensures that if A  is singular 

then there is a real matrix Z  with quaternion orthonormal columns that span the nullspace of A .  If the column space of Z  is 

all of 
n  then A  =  0 TZ Z  and we are done.  If not, let   be any eigenvalue of A  acting on the quaternion orthogonal 

complement of the column space of Z  and let the columns of Y  be a quaternion orthonormal basis for the   –eigenspace of 

A .  Lemma 3.2 ensures that either the column space of Y  is self-conjugate or there is a nonzero scalar      such that the 

column space of 
CY  is the 

C –eigenspace of 
CA .  In the first case, replace Y  with a real matrix with quaternion orthonormal 

columns and the same column space and append it to Z , which then is a real matrix with quaternion orthonormal columns; in 

the second case, the matrix 
CY Y Z    has quaternion orthonormal columns. 

 If the column space of 
CY Y Z    is all of  

n , we are done.  If not, proceed in the same way to consider any 

eigenvalue of A  acting on the quaternion orthogonal complement of the column space of 
CY Y Z   .  Augment either Z  

or Y  and 
CY  as before and continue until this process exhausts the finitely many distinct eigenvalues of A .  At each stage, 

the construction ensures that any new eigenvalue considered is distinct from any eigenvalue of A  previously encountered, so 

we obtain a QQN matrix that diagonalizes A  and gives a representation of the asserted form. 

 Conversely, suppose that A  has a representation of the asserted form.  Any eigenvector x  of A  is in one and only one 

eigenspace of A , which is spanned by a set of contiguous columns of U corresponding to a unique diagonal block in A .  But 

the span of each such set of contiguous columns is either self-conjugate (the nullspace of A  is of this type), or is the conjugate 

of an eigenspace of A  corresponding to a different eigenvalue.  In either event, the conjugate of x  is an eigenvector of A . 

Note 3.4 

 QQN matrices have polar-type decompositions of all three classical types in which the factors commute. 

 

Theorem 3.5  

 Let ( )nA M   be  QQN.  Then 

 a.  A commutes with 
CTA and A PV VP= =  with P  positive semidefinite and V  quaternion unitary. 
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 b.  A commutes with 
TA and A QS SQ= =  with Q  quaternion orthogonal and S   symmetric. 

 c.  A commutes with 
CA  (that is, 

CAA  is real ) and A RE ER= =  with R  real and E   coninvolutory. 

 

Proof 

 

 Let 
CTA UAU=  be QQN, with 1 2 3L LA L =  and a conformal QQU matrix U .  For any given nonzero complex 

number z , we write 
iz re =  for a unique 0r   and a unique [0,2  𝜋 ) ; we represent 0z =  with 0r =  and 0 =  

and write 
00 0 ie= .  For any given diagonal matrix D   =  1( ...... )pdiag d d   =  1

1( ...... )pii

pdiag re r e


  we define 
1/2D      

/21/2

1( ...... )pii

pdiag r e r e


+ + ,  D      1( ...... )pdiag r r , and ( )D      1( ...... )pii
diag e e


.  The following factors 

give the asserted decompositions of A : 

 

(a)  P  =  
1 2 3( ) CTU L L L U  and V  =  

1 2 3( ( ) ( ) ( )) CTU L L L U    

(b)  Q   =  
1/2 1/2 1/2 1/2

2 1 1 2( ) CTU L L L L I U− −   and  S   =  
1/2 1/2 1/2 1/2

2 1 2 1 3( ) CTU L L L L L U  , and 

(c)  R   =  
1/2 1/2 1/2 1/2

2 1 2 1 3(( ) ( ) )C C CTU L L L L L U   and                                                                                          

      E  =  
1/2 1/2 1/2 1/2

2 1 2 1 3(( ) ( ) ( ))C C CTU L L L L L U− −   

 

Note 3.6 

 

 Finally, we observe that quaternion normal matrices in all of the familiar symmetry classes are QQN. 

 

Theorem 3.7  

 

 Let ( )nA M   be quaternion normal.  In each of the following cases, A  is QQN, U  is r-QQU, 
CTA UAU= ,  

1 2 3A L L L=   , and the direct summands sL  can be chosen to have the indicated pattern of eigenvalues: 

 

i)    A is real ( )CA A= :  the diagonal entries of 1L lie in the open upper half plane, 2 1

CL L=   and  the diagonal entries of 

3L   

       are real. 

 

ii)    A is skew-symmetric ( )TA A= − :  the diagonal entries of 1L  are either positive or lie in the open upper  half  plane,  

       2 1L L= −  and 3 0L = . 

 

iii)   A is coninvolutory 
1( )CA A−= : the diagonal entries of  1L  lie in the open exterior of the  unit disc,  

1

2 1( )CL L −=  and 

the  

        diagonal entries of 3L  have modulus one. 

 

iv)   A is quaternion orthogonal 
1( )TA A−= :  the diagonal entries of  1L  lie in the open  exterior of the unit  disc together 

with   

        the open circular arc : 0ie     , 
1

2 1L L−=  and 
1 23 m mL I I=  − . 

 

v)    A is skew- quaternion orthogonal
1( )TA A−= − :  the diagonal entries of  1L lie in the open exterior of the  unit disc 

together  

        with the open circular arc  : / 2 3 / 2ie      , 
1

2 1L L−= −  and   
1 23 m mL iI iI=  − . 

 

vi)   A is pure imaginary ( )CA A= − :  the diagonal entries of  1L  lie in the open left half  plane, 2 1

CL L= −  and the 

diagonal   

        entries of 3L  are pure imaginary. 
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vii)  A is skew-coninvolutory 
1( )CA A−= − : the diagonal entries of  1L  lie in the  open exterior of the unit  disc,  

        
1

2 1( )CL L −= −  and the diagonal entries of 3L  have modulus   one. 

 

viii)  A is symmetric ( )TA A= : 0r = , 3L  is a diagonal matrix with no restrictions on its entries, and  U Z=  is real   

         quaternion orthogonal. 

 

Proof 

 

 In each of the following cases, let x  be a unit vector such that Ax x= .  In order to show that A  is QQN, it suffices 

to show that 
Cx  is an eigenvector of A . 

 

i) 
CAx  = ( )CAx  =  ( )Cx  =

C Cx , so 
Cx  is  an eigenvector corresponding to the  eigenvalue   C . 

ii) 
Tx A  = ( )TAx−  = ( )Tx−  = 

Tx− , so 
Cx  is  an eigenvector corresponding to the  eigenvalue − . 

iii) x  = 
CA Ax  = 

CA x , so  
CAx  = 

1( )C Cx −
; 

Cx  is an eigenvector corresponding to the  eigenvalue  
1( )C −

.  

 

iv) x  = 
TA Ax  = 

TA x , so  
Tx A  = 

1 Tx −
 and hence 

CAx  = 
1 Cx −

 ; 
Cx  is an eigenvector  corresponding to the   

             eigenvalue 
1 −
. 

 

v) x−  = 
TA Ax  = 

TA x , so 
Tx A  = 

1 Tx −−  and hence  
CAx  = 

1 Cx −− ; 
Cx  is an eigenvector corresponding to 

the eigenvalue  
1 −− .  

 

vi) iA  is real. 

 

vii) iA  is coninvolutory. 

 

viii) 
Tx A  = ( )TAx  = ( )Tx = 

Tx , so  
Cx  is an eigenvector corresponding to the eigenvalue  . 

 

Note 3.8 

 

 In the canonical form described in Theorem 3.3, the nonnegative integer 2r  is the sum of  the dimensions of the isotropic  

eigenspaces of A , or, equivalently, 2n r− is the sum of the dimensions of  the self-conjugate eigenspaces of A  .  Thus, r is  

uniquely determined by A .  We say that a QQN matrix A  is degenerate if 0r = , which Theorem 3.7 (viii) ensures is the  

case if and only if A  is symmetric; otherwise, we say that A  is nondegenerate.   

 

4.  Eigenvalue pairing theorems 

 

 Throughout this section, 
CTA UAU= ( )nM   is a nondegenerate QQN, factored as in Theorem 3.3 with A  = 

1 2 3L L L   and 
CU Y Y Z =   ;  let ( )nB M   be given.  If A   is in one of the seven nondegenerate classes 

enumerated in Theorem 3.7 (i)-(viii), we assume without loss of generality that its eigenvalues have been ordered to achieve the 

locations stated there for the diagonal entries of 1 2,L L  and 3L . 

 

 To illustrate the realm of results we wish to study, consider the prototype case of ordinary commutativity:  AB BA= .  

Then 
CT CTUAU B BUAU= , so 

 

   ( )CTA U BU   =  ( )CTU BU A                        ......(1) 

 

Let 

 
CTU BU   =  

CT CT C CT

T T C T

T T C T

Y BY Y BY Y BZ

Y BY Y BY Y BZ

Z BY Z BY Z BZ

 
 
 
 
 

     

11 12 13

21 22 23

31 32 33

B B B

B B B

B B B

 
 
 
  

                   .......(2) 
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   V      
2 ( )C

n rY Y M 
    , 

 

C      
CTV BV   =  

CT CT C

T T C

Y BY Y BY

Y BY Y BY

 
 
 

  =  
11 12

2

21 22

( )r

B B
M

B B

 
  

 
                     ......(3) 

 

and       1 2 2 ( )rL L M   .  Writing out Eq.1 in block form gives the identity 

 

 3 3 33

( )

( )

CT

T

C V BZ

L Z BV L B

  
 
 

  =  
3

33 3

( )

( )

CT

T

C V BZ L

Z BV B L

 
 

 
          .......(4) 

 

Because 1 2,L L  and 3L  (and hence also   and 3L ) have pairwise disjoint spectra, Sylvester’s Theorem[6, Theorem 4.4.6] and 

equality of the (1,2) blocks in Eq.4, as well as the (2,1) blocks, implies that 0CTV BZ =  and 0TZ BV = .  Thus, 

 

   
CTU BU   =  

CT

T T

C V BZ

Z BV Z BZ

 
 
 

  =  

33

0

0

C

B

 
 
 

, 

 

is block diagonal and unitarily similar to B ; the column spaces of 
CV Y Y =    and Z  are each invariant under B .  We 

are interested in the eigenstructure of C , which is the restriction of B  to the column space of 
CY Y   .  

 

 Writing out the equation C C =   from the (1,1) blocks of Eq.4 gives the identity 

 

   
1 11 1 12

2 21 2 22

L B L B

L B L B

 
 
 

  =  
11 1 12 2

21 1 22 2

B L B L

B L B L

 
 
 

    .......(5) 

 

which tells us that 12 21 0B B= =  since 1 2( ) ( )L L  =I .  Thus, the column spaces of Y  and 
CY are each invariant under 

,B C  = 
CT T CY BY Y BY , and 

CTU BU  =  
CT T C TY BY Y BY Z BZ  .  Although there is nothing special about the 

eigenstructure of a quaternion symmetric matrix, in this case we get something interesting if we assume that  B  is symmetric:  
CTY BY  =  ( )T C TY BY  is similar to 

T CY BY , so every block in the Jordan canonical form of C  appears an even number of 

times.  In particular, every eigenvalue of C  has even multiplicity. 

 

 Similar calculations, some with the help of Proposition 2.4, show that other commutativity-related assumptions about 

AB  have useful consequences for C :  If AB BA=  , then C C =   ; if 
CTAB BA=  , then 

CC C =   ; and if 
TAB BA=  , then 2 1( )C C L L =   .  Under natural conditions on the spectra of 1L  and 2L , these relations imply that 

C  is block diagonal.  Moreover, certain conditions on B  ensure various pairings of the eigenvalues of  C . 

 

 Other authors have considered implications of the condition 
TAB BA=  for various classes of matrices (see [2,4,8,9]).  

The following results have their origin in a study of the spectral properties of quaternion unitary operators induced by ergodic 

measure preserving transformations[1,3].  

 

Theorem 4.1 

 

 Let ( )CT

nA UAU M=    be a nondegenerate QQN, factored as in Theorem 3.3 with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   . 

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =  BA , 

ii) AB  =  BA−  and 1 2( ) ( )L L  − =I , 
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iii) AB  =  
CTBA and 

1 2( ) ( )CL L  =I  

iv) AB  =  
CTBA− and 1 2( ) ( )CL L  − =I , or 

v) AB  =  
TBA− , 1 1( ) ( )L L  − =I ,  and 2 2( ) ( )L L  − =I . 

 

 Then C  =  
CT T CY BY Y BY  is block diagonal.  Moreover, 

 

a) If 
TB B= , then each block in the Jordan canonical form of C occurs an even number of times, so every eigenvalue of 

C  has even multiplicity. 

 

b) If B  is real and ( )mJ   is a Jordan block of C , then so is ( )C

mJ  .  Each Jordan block of C corresponding to a real 

eigenvalue occurs an even number of times, so each real eigenvalue of C  (if any) has even multiplicity. 

 

c) If 
TB B= −  and ( )mJ   is a Jordan block of C , then so is ( )mJ − .  Any nilpotent Jordan block of C  occurs an 

even number of times, so if C  is singular, zero is an eigenvalue with even multiplicity. 

 

d) If 
CB B= −  and if ( )mJ   is a Jordan block of C , then so is ( )C

mJ − .  Each Jordan block of C  corresponding to 

a pure imaginary eigenvalue occurs an even number of times, so each pure imaginary eigenvalue of C  (if any) has even 

multiplicity. 

 

Proof 

 

 Under each of the assumptions (i)-(v), inspection of the analog of Eq.5 in each case shows that the off-diagonal blocks 

12B  and 21B  are zero. 

 

 a)     If B  is symmetric, then 22 11

TB B= , so C  =  11 11

TB B  .  The Jordan canonical form of a square quaternion matrix 

and its transpose are the same, so every block in the Jordan canonical form of C  occurs an even number of times. 

 

 b)     If B  is real, then 
22 11( )CT C CB Y BY B= = , so the Jordan blocks of C  occur in conjugate pairs of the form 

( ) ( )C

m mJ J  .  If   is real, then its Jordan blocks occur in pairs of the form ( ) ( )m mJ J  , so each real eigenvalue 

has even multiplicity. 

 

 c)     If B  is skew-symmetric, then 
22 11

TB B= − , so the Jordan blocks of C  occur in pairs of the form 

( ) ( )m mJ J  − .  If C  is singular, then its nilpotent Jordan blocks occur in pairs of the form (0) (0)m mJ J , so zero is 

an eigenvalue with even multiplicity. 

 

 d)     If B is pure imaginary, then B iD=  for some real ( )nD M   and the assertions follow from (b). 

 

Note 4.2 

 

 Of course, the eigenvalues of C  need not be eigenvalues of B .  However, certain additional conditions ensure that 
CTV BZ  and 

TZ BV are both zero.  13B , 23B , 31B  and 32B  are all zero, 
CTU BU  is block diagonal, and the eigenvalues of 

C  are also eigenvalues of  B . 

 

Theorem 4.3 

 

 Let ( )CT

nA UAU M=    be a nondegenerate QQN, factored as in Theorem 3.3, with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   . 

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =  BA , 
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ii) AB  =  BA− , 1 2( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , and 2 3( ) ( )L L  − =I  (these conditions are 

satisfied if A  is coninvolutory or skew-coninvolutory), 

 

iii) AB  =  
CTBA , 

1 2( ) ( )CL L  =I , 
1 3( ) ( )CL L  =I , and 

2 3( ) ( )CL L  =I (these conditions are satisfied 

if A is skew-quaternion orthogonal, coninvolutory, or skew-coninvolutory). 

 

iv) AB  =  
CTBA− , 1 2( ) ( )CL L  − =I , 1 3( ) ( )CL L  − =I , and 

2 3( ) ( )CL L  − =I  (these conditions are 

satisfied if A is quaternion orthogonal, coninvolutory, or skew-coninvolutory), or 

 

v) AB  =  
TBA− , 1 1( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , 2 2( ) ( )L L  − =I , and 2 3( ) ( )L L  − =I  

(these conditions are satisfied if A is real, pure imaginary, or skew-symmetric). 

 

 Then 
CTU BU   =  

CT T C TY BY Y BY Z BZ    =  
TC Z BZ , every eigenvalue of C  is an eigenvalue of  B , 

and C  satisfies each of the conclusions (a)-(d) of Theorem 4.1. 

 

 Certain conditions force the diagonal blocks 11B  and 22B  to be zero, and certain conditions on  B  ensure that the 

eigenvalues of C  are paired. 

 

Theorem 4.4 

 

 Let ( )CT

nA UAU M=   be a nondegenerate QQN, factored as in Theorem 3.3, with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   .  

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =   BA− , 1 1( ) ( )L L  − =I , and 2 2( ) ( )L L  − =I , 

ii) AB  =  
CTBA , 

1 1( ) ( )CL L  =I , and 
2 2( ) ( )CL L  =I ,  

iii) AB  =  
CTBA− , 1 1( ) ( )CL L  − =I , and 

2 2( ) ( )CL L  − =I , 

iv) AB  =  
TBA , or 

v) AB  =  
TBA− , and 1 2( ) ( )L L  − =I . 

 

 Then C   =  
0

0

CT C

T

Y BY

Y BY

 
 
 

 

 Moreover, 

a) Every non-singular Jordan block of 
2C occurs an even number of times, and every eigenvalue of 

2C  has even 

multiplicity. 

 

b) If  B is either real or pure imaginary, and if ( )mJ   is a Jordan block of  C , then so are ( )mJ −  and ( )C

mJ  .  

Thus, the eigenvalues of C occur in   conjugate quadruplets with the same multiplicities. 

 

c) If 
CTB  =  B , then the eigenvalues of C are real and occur in   pairs with the same multiplicities.  In fact they are 

singular values of 
CT CY BY together with their negatives. 

 

Proof 

 

 Under each of the assumptions (i)-(v), inspection of the analog of Eq.5 in each case shows that 11 22 0B B= = . 
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 a)     We have 
2C  =  12 21 21 12B B B B , and the non-singular Jordan blocks of 12 21B B and 21 12B B are always the same; 

their nilpotent Jordan structures can be different, but zero is an eigenvalue of the same multiplicity for both.  Hence, 
2C  has an 

even number of zero eigenvalues. 

 

 b)     If B  is real, then C  =  
12

12

0

0C

B

B

 
 
 

.  Since every square quaternion matrix is consimilar to a real matrix, there is 

a real R  and a non-singular S such that  12B  =  
1( )CSR S −
.  Let X     

CS S  and let K     
1

2

I I

I I

− 
 
 

,  so 

1 TK K− = .  A calculation reveals that 
1 1 1( ) ( )XK C XK− − −

 =  R R−  .  Thus, if ( )mJ   is a Jordan block of C , then so 

are ( )mJ − , ( )C

mJ  , and ( )C

mJ − .   

 

 c)     If 
CTB B= , then C  =  

12

12

0

0CT

B

B

 
 
 

.  Let 12B U V=  be a singular value decomposition of 12B , and set 

CTX U V  .  Then 
1 1 1( ) ( )XK C XK− − −

 =  − [5, Theorem 7.3.7] 

 

Note 4.5 

 

 Certain conditions on 1L , 2L  and 3L  ensure that 
CTU BU  =  

TC Z BZ , so the eigenvalues of C are also 

eigenvalues of  B . 

 

Theorem 4.6 

 

 Let ( )CT

nA UAU M=   be a nondegenerate QQN, factored as in Theorem 3.3, with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   .  

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =   BA− , 1 1( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , and 2 2( ) ( )L L  − =I , and 

2 3( ) ( )L L  − =I (these conditions are satisfied if A  is real, pure imaginary, or skew-symmetric). 

 

ii) AB   =  
CTBA , 

1 1( ) ( )CL L  =I ,  
2 2( ) ( )CL L  =I ,  

1 3( ) ( )CL L  =I , and 
2 3( ) ( )CL L  =I  

(these conditions are satisfied if A is real), 

 

iii) AB  =  
CTBA− , 1 1( ) ( )CL L  − =I , and 

2 2( ) ( )CL L  − =I , 1 3( ) ( )CL L  − =I , and 

2 3( ) ( )CL L  − =I  (these conditions are satisfied if A is pure imaginary), 

 

iv) AB  =  
TBA , or 

 

v) AB  =  
TBA− , 1 2( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , and 2 3( ) ( )L L  − =I (these conditions are 

satisfied if A  is coninvolutory or skew-coninvolutory), 

 

 Then 
CTU BU   =  

0

0

CT C

T

T

Y BY
Z BZ

Y BY

 
 

 
 

Every eigenvalue of C  is an eigenvalue of B , and C  satisfies the conclusions (a)-(c) of Theorem 4.4. 

 

Proof 

 

 Proceed as before. 
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Note 4.7 

 

 The relations 
TAB B A=   and 

TAB BA  also lead to eigenvalue pairings, but via a somewhat different path. 

 

Lemma 4.8 

 

 Let 2 ( )rT M   be given. 

 

a) If T  is skew-quaternion Hamiltonian, then every Jordan block of T occurs an even number of times.   

 

b)   Suppose T is quaternion Hamiltonian.  Then 
2T is skew-quaternion Hamiltonian.  If ( )mJ  is a nonsingular Jordan 

block of T , then so is ( )mJ − .  Every odd-sized singular Jordan block of T occurs an even number of times, and zero is an 

eigenvalue of T with even multiplicity. 

 

Proof 

 

a) The asserted pairing follows from the fact that a skew-quaternion Hamiltonian matrix is similar (via a symplectic 

similarity) to the direct sum of a matrix and its transpose  [7, Theorem 6]. 

 

b) If  T  is quaternion Hamiltonian, block multiplication reveals that 
2T  is skew-quaternion Hamiltonian and that  

 

0

0

I

I

 
 
− 

  
T

E F

G E

 
 

− 
  

0

0

I

I

− 
 
 

  =  

T

T

E F

G E

 
 

− 
, 

 

so T− is similar to the transpose of  T , and hence to  T  itself.  This observation proves the asserted pairing of the nonsingular 

Jordan blocks of  T and 
2T .  One checks that 

2

2 1( (0))mJ +
is similar to 1(0) (0)m mJ J +  and that 

2

2( (0))mJ  is similar to 

(0) (0)m mJ J .  If 2 1(0)mJ +  is an odd-sized nilpotent Jordan block of  T , the fact that 
2T  is Skew-Quaternion Hamiltonian 

means that its Jordan canonical form contains each of the blocks (0)mJ  and 1(0)mJ +  an even number of times; their respective 

parities are unaffected by the presence or absence of 2 (0)mJ  in the Jordan form of  T .  Thus, the Jordan form of  T must 

contain an even number of copies of 2 1(0)mJ + . 

 

Theorem 4.9 

 

 Let ( )nA M   be quaternion normal and let ( )nB M   be given. 

 

a) Suppose that A is not quaternion symmetric and that A  and B  satisfy at least one of the four conditions AB  =  
TB A

, AB  =  
TB A− , 

TAB  =  BA , or 
TAB  =  BA− .  Suppose either that A  is coninvolutory and factored as in Theorem 3.7(iii), 

or that A  is skew-quaternion coninvolutory and factored as in Theorem 3.7(vii).  Let  CT

stU BU B=  be defined as in eqn. 

(2).  Then 
CTU BU  =  11 22 33B B B  is block diagonal.  If AB  =  

TB A  or 
TAB  =  BA , then every Jordan block of 

11 22B B  occurs with even multiplicity.  If AB  = 
TB A− or 

TAB  = BA− , and if ( )mJ   is a Jordan block of 11 22B B , 

then so is ( )mJ − . 

 

b) Suppose that ( )nA M   is nonzero and skew-quaternion symmetric, factored as in Theorem 3.7(ii).  

 

b1)  Suppose that  AB  =  
TB A  and BA  =  

TAB .  Then 
CTU BU  =  33C B .  Moreover, C is Skew-quaternion 

Hamiltonian, so every block in the Jordan canonical form of  C  occurs an even number of times. 

 

b2) Suppose that AB  =  
TB A− and  BA  = 

TAB− .  Then  
CTU BU   =  33C B .  Moreover, C  is Quaternion 

Hamiltonian.  If ( )mJ   is a nonsingular Jordan block of C , then so is  ( )mJ − .  Every odd-sized singular Jordan block of 
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C  occurs an even number of times, and zero is an eigenvalue of C  with even multiplicity.  Every Jordan block of 
2C  occurs 

an even number of times. 

 

Proof 

 

a) The assumptions ensure that A  is a nondegenerate QQN with 2L = 
1

1( )CL − .  Moreover, 3L is non-singular and the 

diagonal entries of 1L lie outside the open unit disk.  Using the notation and invoking its conclusions, it suffices to observe that 

1s t s t     for all , 1......s t r= .  Moreover, 11B is similar to 22B , which ensures that the assertions about pairings 

of the Jordan blocks of 11 22B B  are correct. 

 

b1) Again, A  is a nondegenerate QQN.  The diagonal entries of  1L  are either positive or in the open upper half plane, and 

2L  = 1L− .  The key observation is that, under these conditions, 1L  is a polynomial in 
2

1L , and 
2

1L commutes with 11B , it 

follows that  1L commutes with  11B .  Thus, 
22

TB  = 
1

1 11 1( )L B L−
 = 11B .  Also, 12

TB  = 
1

1 12 2( )L B L−
 = 

1

1 12 1( )L B L−−  = 12B−

, so 12B is skew-quaternion symmetric.  A similar computation shows that 21B is also skew-quaternion symmetric, so C  is 

skew-Quaternion Hamiltonian. 

 

b2) One can argue as in (b1).  
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