# Quaternion Quasi-Normal Matrices And Their Eigenvalues 

${ }^{1}$ J. Rajeswari , ${ }^{2}$ Dr. K. Gunasekaran<br>${ }^{1}$ Ph.D Research Scholar, ${ }^{2} \mathrm{HOD}$ and Assistant Professor, ${ }^{1,2}$ Ramanujan Research Centre, PG and Research Department of Mathematics, Government Arts College(Autonomous), Kumbakonam. Tamil Nadu, India.


#### Abstract

For square quaternion matrices $A$ and $B$ of the same size, commutativity-like relations such as $A B= \pm B A$, $A B= \pm B A^{C T}, A B= \pm B A^{T}, A B= \pm B^{T} A$, etc., often cause a special structure of $A$ to be reflected in some special structure for $B$. We study eigenvalue pairing theorems for $B$ when $A$ is quaternion quasi normal (QQN), a class of quaternion matrices that is a natural generalization of the real normal and complex normal matrices. A new canonical form for QQN matrices is an important tool for our development. AMS Classification: 15A99, 15A04, 15A15, 15A116, 15A48


Key words - Quaternion matrices, Spectrum, Canonical form, Direct sum, Skew - Hermitian, Orthonormal, Jordan block.

## 1. Introduction

Any eigenvalues (quaternion eigenvalues) of a real square matrix $A$ come in conjugate pairs, and corresponding eigenvectors can be chosen in conjugate pairs ( $A x=\lambda x$ if and only if $A x^{C}=\lambda^{C} x^{C}$ ); real eigenvectors of $A$ can be associated with its real eigenvalues. If $A$ is diagonalizable, it can therefore be diagonalized in a special way: $A=S A S^{-1}$, $A=L \oplus L^{C} \oplus R$ is diagonal, the diagonal entries of $L$ (if any) are in the open upper half partition of four dimension structure, the diagonal entries of $R$ (if any) are real, $S=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$ is non-singular, $Y$ has the same number of columns as $L$ and $Z$ is real.

If $A$ is quaternion normal, it can be quaternion unitary diagonalized in the same way: $A=U A U^{C T}$, $A=L \oplus L^{C} \oplus R$ is diagonal, the diagonal entries of $L$ (if any) are in the open upper half partition of four dimension structure, the diagonal entries of $R$ (if any) are real, $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$ is unitary, $Y$ has the same number of columns as $L$ and $Z$ is real. This canonical form is different from, but equivalent to, the classical real normal form [5, Theorem 2.5.8] and suggests a wide class of generalizations that play a role in the study of eigenvalue pairing theorems that motivated our investigations. We use standard terminology and notation, as in [5,6]. We let be the set of $m \times n$ matrices with entries in $\mathbf{F}=\mathrm{i}$ or H and write $M_{n} \equiv M_{n \times n}(\mathrm{H})$. The set of eigenvalues (spectrum) of $A \in M_{n}(\mathrm{H})$ is denoted by $\sigma(A)$.

Two characterizing properties of a quaternion normal matrix $A$ play an essential role in our discussion: (a) $A$ can be quaternion unitarily diagonalized and (b) a nonzero vector $x$ is a right $\lambda$ - eigenvector of $A$ ( $A x=\lambda x$ for some scalar $\lambda$ ) if and only if it is a left eigenvector, necessarily with the same eigenvalue ( $x^{C T} A=\lambda x^{C T}$ ). Eigenvectors of a normal matrix associated with distinct eigenvalues are necessarily orthogonal. If $A$ is quaternion normal, then the quaternion orthogonal complement of the span of any collection of eigenvectors is an invariant subspace of $A$.

## 2. Quaternion Quasi unitary matrices

Definition 2.1
A matrix $U \in M_{n}(\mathrm{H})$ is said to be r-quaternion quasi unitary (r-QQU) if $U$ is quaternion unitary, $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right], Y \in M_{n \times r}(\mathrm{H})$, and $Z \in M_{n \times n-2 r}(i)$ When $r=0$, then $U=Z$ is real orthogonal; when $2 r=n$ then $U=\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$. When the value of the parameter $r$ is not relevant, we say that $U$ is QQU. For a given $Y \in M_{n \times r}(\mathrm{H})$ with quaternion orthonormal columns, the columns of $Y$ need not be quaternion orthogonal to those of $Y^{C}$. A necessary and sufficient condition for $\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$ to have quaternion orthonormal columns is that $Y^{C T} Y=I$ and $Y^{T} Y=0$, that is, $Y$ has quaternion orthonormal columns that are rectangular and isotropic. If $\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$ has quaternion orthonormal columns, then no column of $Y$ can be real since each column of $Y$ must be quaternion orthogonal to every column of $Y^{C}$.

If $\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$ has quaternion orthonomal columns and $n>2 r$, then there is always a quaternion $X \in M_{n \times n-2 r}(\mathrm{H})$ such that $\left[\begin{array}{lll}Y & Y^{C} & X\end{array}\right]$ (and hence also $\left[\begin{array}{lll}Y^{C} & Y & X^{C}\end{array}\right]$ ) is quaternion unitary. However, any such $X$ has an important property: the column spaces of $X$ and $X^{C}$ are the identical namely, the quaternion orthogonal complement of the column space of $\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$. We say that a subspace spanned by the columns of $X \in M_{n \times m}(\mathrm{H})$ is self-conjugate if it is the same as the column space of $X^{C}$.

## Lemma 2.2

Let $\hat{X} \in M_{n \times m}(\mathrm{H})$ have rank $m \geq 1$ and suppose that the column space of $\hat{X}$ is self-conjugate. Then there is a real $Z \in M_{n \times m}(\mathrm{H})$ with quaternion orthonormal columns and the same column space as $\hat{X}$. In particular, if $n \geq m>2 r \geq 0$, $Y \in M_{n \times r}(\mathrm{H}), \hat{X} \in M_{n \times m-2 r}(\mathrm{H}), \quad \tilde{Z} \in M_{n \times n-m}(i)$, and $\left[\begin{array}{l}Y \\ Y^{C} \hat{X} \tilde{Z}\end{array}\right] \in M_{n}(\mathrm{H})$ is quaternion unitary, then there exists a $Z \in M_{n \times m-2 r}(i)$ such that $\left[\begin{array}{llll}Y & Y^{C} & Z & \widetilde{Z}\end{array}\right]$ is quaternion unitary.
Proof:
Since $\hat{X}$ has full rank, there is a matrix $X \in M_{n \times m}(\mathrm{H})$ with quaternion orthonormal columns with the same column space as that of $\hat{X}$. Since the column space of $\hat{X}$, and hence of $X$, is self-conjugate, there exists a nonsingular $W \in M_{r}(\mathrm{H})$ such that $X^{C}=X W$. Then, $I=\left(X^{C}\right)^{C T} X^{C}=W^{C T} X^{C T} X W=W^{C T} W$, so $W$ is quaternion unitary. Moreover, $X=X^{C} W^{C}=X W W^{C}$, so $X\left(I-W W^{C}\right)=0$. Since $X$ has full column rank, we must have $W W^{C}=I$, that is, $W$ is quaternion unitary and coninvolutory and hence it is also symmetric [6, Section 6.4].

Let $p(t)$ be a polynomial such that $V \equiv p(W)$ is a square root of $W$. Then $V$ is quaternion unitary and symmetric, and hence it is also coninvolutory. Moreover, $X^{C}=X V^{2}$ so $X^{C} V^{-1}=X^{C} V^{C}=X V \equiv Z$ is real. Since it is obtained from $X$ by a right quaternion unitary transformation, $Z$ has quaternion orthonormal columns and the same column space as $X$. Note 2.3

If the assumption that $\hat{X}$ has full rank is omitted in Lemma 2.2, one may still show that its column space has a real quaternion orthonormal basis [6, Theorem 6.4.24]. The following three assertions are easily verified.
Proposition 2.4
Let $U, V \in M_{n}(\mathrm{H})$ be r-QQU matrices and let $Q \in M_{n}(\mathrm{H})$ be real quaternion orthogonal. Then
a. $U^{T} U=U^{C T} U^{C}=\left[\begin{array}{cc}0 & I_{r} \\ I_{r} & 0\end{array}\right] \oplus I_{n-2 r}$ is quaternion unitary, symmetric, and coninvolutory,
b. $U V^{C T}$ is real quaternion orthogonal, and
c. $Q U$ is $\mathrm{r}-\mathrm{QQU}$.

Proof
b. Suppose $U=\left[\begin{array}{lll}Y_{1} & Y_{1}^{C} & Z_{1}\end{array}\right]$ and $V=\left[\begin{array}{lll}Y_{2} & Y_{2}^{C} & Z_{2}\end{array}\right]$ with $Y_{1}, Y_{2} \in M_{n \times r}(\mathrm{H})$. Then $U V^{C T}$ is a product of quaternion unitary matrices and hence is quaternion unitary. However, $U V^{C T}=Y_{1} Y_{2}^{C T}+Y_{1}^{C} Y_{2}^{T}+Z_{1} Z_{2}^{T}=$ $2 \operatorname{Re}\left(Y_{1} Y_{2}^{C T}\right)+Z_{1} Z_{2}^{T}$ is real, so it is real quaternion orthogonal.

## 3. Quaternion Quasi-Normal matrices

## Definition 3.1

A matrix $A \in M_{n}(\mathrm{H})$ is said to be quaternion quasi-normal ( QQN ) if (i) $A$ is quaternion normal. (ii) $x^{C}$ is an eigenvector of $A$ whenever $x$ is, and (iii) the nullspace of $A$ is self-conjugate, that is $A x=0$ if and only if $A x^{C}=0$.

Every real quaternion normal matrix is QQN, but so are several other familiar symmetry classes of quaternion normal matrices. If $A$ is QQN and Q is real quaternion orthogonal, it follows immediately from the definition that $A^{C}$ and $Q A Q^{T}$ are both QQN [1]. The basic structure of the eigenspaces of a QQN matrix is described in the following lemma, which leads directly to a pleasant canonical form.

## Lemma 3.2

Suppose $\lambda$ is a nonzero eigenvalue of a QQN matrix $A \in M_{n}(\mathrm{H})$, and let the columns of $Y$ be an quaternion orthonormal basis of the $\lambda$-eigenspace of $A$, so that $A Y=\lambda Y$. Then there is a nonzero scalar $\mu$ such that $\left\{x \in \mathrm{H}^{n}: A x=\lambda x\right\}=\left\{x \in \mathrm{H}^{n}: A^{C} x=\mu^{c} x\right\}$. If $\mu=\lambda$, then the $\lambda$-eigenspace of $A$ is self-conjugate and
$A Y^{C}=\lambda Y^{C}$; if $\mu \neq \lambda$, then $A Y^{C}=\mu Y^{C}$, the columns of $Y^{C}$ are an quaternion orthonormal basis for the $\mu^{C}$-eigenspace of $A^{C}$ and $\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$ has quaternion orthonormal columns.

## Proof

Let $x$ be a unit $\lambda$-eigenvector of $A$, so there is some scalar $\mu$ such that $A x^{C}=\mu x^{C}$ that is, $A^{C} x=\mu^{C} x$. Since the conjugate of $x^{C}$ is not in the nullspace of $A$, it follows that $\mu \neq 0$. We claim that the $\lambda$-eigenspace of $A$ and the $\mu^{C}$ -eigenspace of $A^{C}$ have the same dimension.

Since $A$ is QQN if and only if $A^{C}$ is QQN [10], for purposes of obtaining a contradiction it suffices to suppose that the $\lambda$-eigenspace of $A$ has dimension greater than that of the $\mu^{C}$-eigenspace of $A^{C}$. Suppose $u$ is a unit vector in the $\lambda$ eigenspace of $A$ that is quaternion orthogonal to $x$, so $A x=\lambda x, A u=\lambda u, A x^{C}=\lambda x^{C}$, and there is some scalar $v$ such that $A u^{C}=v u^{C}$. But $x+u \neq 0$ and $A(x+u)=\lambda(x+u)$, so $A x^{C}+A u^{C}=A(x+u)^{C}=\gamma(x+u)^{C}=$ $\gamma x^{C}+\gamma u^{C}$ for some scalar $\gamma$. It follows that $\mu=\gamma=v$. Thus, if the columns of $Y$ are a quaternion orthonormal basis of the $\lambda$-eigenspace of $A$ (so $A Y=\lambda Y$ ), then $A Y^{C}=\mu Y^{C}$ and the column space of $Y^{C}$ is contained in the $\mu^{C}$-eigenspace of $A^{C}$. This shows that the dimension of the $\mu^{C}$-eigenspace of $A^{C}$ cannot be less than that of the $\lambda$-eigenspace of $A$, so these two eigenspaces must have the same dimension. Moreover, this argument shows that each eigenspace is the conjugate of the other. If $\lambda=\mu$, the eigenspace is self-conjugate; if $\lambda \neq \mu$ normality of $A$ ensures that the two eigenspaces are quaternion orthogonal.

## Theorem 3.3

A matrix $A \in M_{n}(\mathrm{H})$ is QQN if and only if there is a nonnegative integer $r$, a $r$-quaternion quasi-unitary matrix $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$, and a diagonal matrix $A=L_{1} \oplus L_{2} \oplus L_{3}$ such that $A=U A U^{C T}, L_{1}, L_{2} \in M_{r}(\mathrm{H})$ are non-singular, and there are nonnegative integers $f$ and $g$, positive integers $n_{1} \ldots \ldots n_{f}, m_{1} \ldots . . m_{g}$, and $2 f+g$ distinct scalars $\lambda_{1} \ldots \ldots . \lambda_{f}$ $, \mu_{1} \ldots \ldots \mu_{f}, v_{1} \ldots \ldots v_{g}$ such that $n_{1}+\ldots \ldots+n_{f}=r, m_{1}+\ldots \ldots m_{g}=n-2 r, L_{1}=\lambda_{1} I_{n_{1}} \oplus \ldots \ldots \oplus \lambda_{f} I_{n_{f}}, L_{2}=$ $\mu_{1} I_{n_{1}} \oplus \ldots \ldots \oplus \mu_{f} I_{n_{f}}$ and $L_{3}=v_{1} I_{m_{1}} \oplus \ldots \ldots \oplus v_{g} I_{m_{g}}$.

## Proof

Suppose $A$ is QQN. Since the nullspace of a QQN matrix is self-conjugate, Lemma 2.2 ensures that if $A$ is singular then there is a real matrix $Z$ with quaternion orthonormal columns that span the nullspace of $A$. If the column space of $Z$ is all of $\mathrm{H}^{n}$ then $A=Z 0 Z^{T}$ and we are done. If not, let $\lambda$ be any eigenvalue of $A$ acting on the quaternion orthogonal complement of the column space of $Z$ and let the columns of $Y$ be a quaternion orthonormal basis for the $\lambda$-eigenspace of A. Lemma 3.2 ensures that either the column space of $Y$ is self-conjugate or there is a nonzero scalar $\mu \neq \lambda$ such that the column space of $Y^{C}$ is the $\mu^{C}$-eigenspace of $A^{C}$. In the first case, replace $Y$ with a real matrix with quaternion orthonormal columns and the same column space and append it to $Z$, which then is a real matrix with quaternion orthonormal columns; in the second case, the matrix $\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$ has quaternion orthonormal columns.

If the column space of $\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$ is all of $\mathrm{H}^{n}$, we are done. If not, proceed in the same way to consider any eigenvalue of $A$ acting on the quaternion orthogonal complement of the column space of $\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$. Augment either $Z$ or $Y$ and $Y^{C}$ as before and continue until this process exhausts the finitely many distinct eigenvalues of $A$. At each stage, the construction ensures that any new eigenvalue considered is distinct from any eigenvalue of $A$ previously encountered, so we obtain a QQN matrix that diagonalizes $A$ and gives a representation of the asserted form.

Conversely, suppose that $A$ has a representation of the asserted form. Any eigenvector $x$ of $A$ is in one and only one eigenspace of $A$, which is spanned by a set of contiguous columns of $U$ corresponding to a unique diagonal block in $A$. But the span of each such set of contiguous columns is either self-conjugate (the nullspace of $A$ is of this type), or is the conjugate of an eigenspace of $A$ corresponding to a different eigenvalue. In either event, the conjugate of $x$ is an eigenvector of $A$.
Note 3.4
QQN matrices have polar-type decompositions of all three classical types in which the factors commute.

## Theorem 3.5

Let $A \in M_{n}(\mathrm{H})$ be QQN . Then
a. A commutes with $A^{C T}$ and $A=P V=V P$ with $P$ positive semidefinite and $V$ quaternion unitary.
b. A commutes with $A^{T}$ and $A=Q S=S Q$ with $Q$ quaternion orthogonal and $S$ symmetric.
c. A commutes with $A^{C}$ (that is, $A A^{C}$ is real ) and $A=R E=E R$ with $R$ real and $E$ coninvolutory.

## Proof

Let $A=U A U^{C T}$ be QQN, with $A=L_{1} \oplus L_{2} \oplus L_{3}$ and a conformal QQU matrix $U$. For any given nonzero complex number $z$, we write $z=r e^{i \theta}$ for a unique $r>0$ and a unique $\theta \in[0,2 \pi)$; we represent $z=0$ with $r=0$ and $\theta=0$ and write $0=0 e^{i 0}$. For any given diagonal matrix $D=\operatorname{diag}\left(d_{1} \ldots \ldots d_{p}\right)=\operatorname{diag}\left(r_{1} e^{i \theta_{1}} \ldots \ldots r_{p} e^{i \theta_{p}}\right)$ we define $D^{1 / 2} \equiv$ $\operatorname{diag}\left(+\sqrt{r_{1}} e^{i \theta_{1 / 2}} \ldots \ldots+\sqrt{r_{p}} e^{i \theta_{p / 2}}\right),|D| \equiv \operatorname{diag}\left(r_{1} \ldots \ldots r_{p}\right)$, and $\Theta(D) \equiv \operatorname{diag}\left(e^{i \theta_{1}} \ldots \ldots e^{i \theta_{p}}\right)$. The following factors give the asserted decompositions of $A$ :
(a) $P=U\left(\left|L_{1}\right| \oplus\left|L_{2}\right| \oplus\left|L_{3}\right|\right) U^{C T}$ and $V=U\left(\Theta\left(L_{1}\right) \oplus \Theta\left(L_{2}\right) \oplus \Theta\left(L_{3}\right)\right) U^{C T}$
(b) $Q=U\left(L_{2}^{-1 / 2} L_{1}^{1 / 2} \oplus L_{1}^{-1 / 2} L_{2}^{1 / 2} \oplus I\right) U^{C T}$ and $S=U\left(L_{2}^{1 / 2} L_{1}^{1 / 2} \oplus L_{2}^{1 / 2} L_{1}^{1 / 2} \oplus L_{3}\right) U^{C T}$, and
(c) $R=U\left(\left(L_{2}^{C}\right)^{1 / 2} L_{1}^{1 / 2} \oplus L_{2}^{1 / 2}\left(L_{1}^{C}\right)^{1 / 2} \oplus\left|L_{3}\right|\right) U^{C T}$ and $E=U\left(\left(L_{2}^{C}\right)^{-1 / 2} L_{1}^{1 / 2} \oplus L_{2}^{1 / 2}\left(L_{1}^{C}\right)^{-1 / 2} \oplus \Theta\left(L_{3}\right)\right) U^{C T}$

## Note 3.6

Finally, we observe that quaternion normal matrices in all of the familiar symmetry classes are QQN.

## Theorem 3.7

Let $A \in M_{n}(\mathrm{H})$ be quaternion normal. In each of the following cases, $A$ is $\mathrm{QQN}, U$ is $\mathrm{r}-\mathrm{QQU}, A=U A U^{C T}$, $A=L_{1} \oplus L_{2} \oplus L_{3}$, and the direct summands $L_{s}$ can be chosen to have the indicated pattern of eigenvalues:
i) $A$ is real $\left(A^{C}=A\right)$ : the diagonal entries of $L_{1}$ lie in the open upper half plane, $L_{2}=L_{1}^{C}$ and the diagonal entries of $L_{3}$ are real.
ii) $\quad A$ is skew-symmetric $\left(A^{T}=-A\right)$ : the diagonal entries of $L_{1}$ are either positive or lie in the open upper half plane, $L_{2}=-L_{1}$ and $L_{3}=0$.
iii) $A$ is coninvolutory $\left(A^{C}=A^{-1}\right)$ : the diagonal entries of $L_{1}$ lie in the open exterior of the unit disc, $L_{2}=\left(L_{1}^{C}\right)^{-1}$ and the diagonal entries of $L_{3}$ have modulus one.
iv) $A$ is quaternion orthogonal $\left(A^{T}=A^{-1}\right)$ : the diagonal entries of $L_{1}$ lie in the open exterior of the unit disc together with
the open circular $\operatorname{arc}\left\{e^{i \theta}: 0<\theta<\pi\right\}, L_{2}=L_{1}^{-1}$ and $L_{3}=I_{m_{1}} \oplus-I_{m_{2}}$.
v) $\quad A$ is skew- quaternion orthogonal $\left(A^{T}=-A^{-1}\right)$ : the diagonal entries of $L_{1}$ lie in the open exterior of the unit disc together
with the open circular arc $\left\{e^{i \theta}: \pi / 2<\theta<3 \pi / 2\right\}, L_{2}=-L_{1}^{-1}$ and $L_{3}=i I_{m_{1}} \oplus-i I_{m_{2}}$.
vi) $A$ is pure imaginary $\left(A^{C}=-A\right)$ : the diagonal entries of $L_{1}$ lie in the open left half plane, $L_{2}=-L_{1}^{C}$ and the diagonal
entries of $L_{3}$ are pure imaginary.
vii) $A$ is skew-coninvolutory $\left(A^{C}=-A^{-1}\right)$ : the diagonal entries of $L_{1}$ lie in the open exterior of the unit disc, $L_{2}=-\left(L_{1}^{C}\right)^{-1}$ and the diagonal entries of $L_{3}$ have modulus one.
viii) $A$ is symmetric $\left(A^{T}=A\right): r=0, L_{3}$ is a diagonal matrix with no restrictions on its entries, and $U=Z$ is real quaternion orthogonal.

## Proof

In each of the following cases, let $x$ be a unit vector such that $A x=\lambda x$. In order to show that $A$ is QQN , it suffices to show that $x^{C}$ is an eigenvector of $A$.
i) $\quad A x^{C}=(A x)^{C}=(\lambda x)^{C}=\lambda^{C} x^{C}$, so $x^{C}$ is an eigenvector corresponding to the eigenvalue $\lambda^{C}$.
ii) $\quad x^{T} A=(-A x)^{T}=(-\lambda x)^{T}=-\lambda x^{T}$, so $x^{C}$ is an eigenvector corresponding to the eigenvalue $-\lambda$.
iii) $\quad x=A^{C} A x=\lambda A^{C} x$, so $A x^{C}=\left(\lambda^{C}\right)^{-1} x^{C} ; x^{C}$ is an eigenvector corresponding to the eigenvalue $\left(\lambda^{C}\right)^{-1}$.
iv) $\quad x=A^{T} A x=\lambda A^{T} x$, so $x^{T} A=\lambda^{-1} x^{T}$ and hence $A x^{C}=\lambda^{-1} x^{C} ; x^{C}$ is an eigenvector corresponding to the eigenvalue $\lambda^{-1}$.
v) $-x=A^{T} A x=\lambda A^{T} x$, so $x^{T} A=-\lambda^{-1} x^{T}$ and hence $A x^{C}=-\lambda^{-1} x^{C} ; x^{C}$ is an eigenvector corresponding to the eigenvalue $-\lambda^{-1}$.
vi) $i A$ is real.
vii) iA is coninvolutory.
viii) $\quad x^{T} A=(A x)^{T}=(\lambda x)^{T}=\lambda x^{T}$, so $x^{C}$ is an eigenvector corresponding to the eigenvalue $\lambda$.

## Note 3.8

In the canonical form described in Theorem 3.3, the nonnegative integer $2 r$ is the sum of the dimensions of the isotropic eigenspaces of $A$, or, equivalently, $n-2 r$ is the sum of the dimensions of the self-conjugate eigenspaces of $A$. Thus, $r$ is uniquely determined by $A$. We say that a QQN matrix $A$ is degenerate if $r=0$, which Theorem 3.7 (viii) ensures is the case if and only if $A$ is symmetric; otherwise, we say that $A$ is nondegenerate.

## 4. Eigenvalue pairing theorems

Throughout this section, $A=U A U^{C T} \in M_{n}(\mathrm{H})$ is a nondegenerate QQN, factored as in Theorem 3.3 with $A=$ $L_{1} \oplus L_{2} \oplus L_{3}$ and $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$; let $B \in M_{n}(\mathrm{H})$ be given. If $A$ is in one of the seven nondegenerate classes enumerated in Theorem 3.7 (i)-(viii), we assume without loss of generality that its eigenvalues have been ordered to achieve the locations stated there for the diagonal entries of $L_{1}, L_{2}$ and $L_{3}$.

To illustrate the realm of results we wish to study, consider the prototype case of ordinary commutativity: $A B=B A$. Then $U A U^{C T} B=B U A U^{C T}$, so

$$
\begin{equation*}
A\left(U^{C T} B U\right)=\left(U^{C T} B U\right) A \tag{1}
\end{equation*}
$$

Let

$$
U^{C T} B U=\left[\begin{array}{ccc}
Y^{C T} B Y & Y^{C T} B Y^{C} & Y^{C T} B Z  \tag{2}\\
Y^{T} B Y & Y^{T} B Y^{C} & Y^{T} B Z \\
Z^{T} B Y & Z^{T} B Y^{C} & Z^{T} B Z
\end{array}\right] \equiv\left[\begin{array}{ccc}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right]
$$

$$
\begin{gather*}
V \equiv\left[\begin{array}{ll}
Y & Y^{C}
\end{array}\right] \in M_{n \times 2 r}(\mathrm{H}), \\
C \equiv V^{C T} B V=\left[\begin{array}{cc}
Y^{C T} B Y & Y^{C T} B Y^{C} \\
Y^{T} B Y & Y^{T} B Y^{C}
\end{array}\right]=\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] \in M_{2 r}(\mathrm{H}) \tag{3}
\end{gather*}
$$

and $\Delta \equiv L_{1} \oplus L_{2} \in M_{2 r}(\mathrm{H})$. Writing out Eq. 1 in block form gives the identity

$$
\left[\begin{array}{cc}
\Delta C & \Delta\left(V^{C T} B Z\right)  \tag{4}\\
L_{3}\left(Z^{T} B V\right) & L_{3} B_{33}
\end{array}\right]=\left[\begin{array}{cc}
C \Delta & \left(V^{C T} B Z\right) L_{3} \\
\left(Z^{T} B V\right) \Delta & B_{33} L_{3}
\end{array}\right]
$$

Because $L_{1}, L_{2}$ and $L_{3}$ (and hence also $\Delta$ and $L_{3}$ ) have pairwise disjoint spectra, Sylvester's Theorem[6, Theorem 4.4.6] and equality of the $(1,2)$ blocks in Eq.4, as well as the $(2,1)$ blocks, implies that $V^{C T} B Z=0$ and $Z^{T} B V=0$. Thus,

$$
U^{C T} B U=\left[\begin{array}{cc}
C & V^{C T} B Z \\
Z^{T} B V & Z^{T} B Z
\end{array}\right]=\left[\begin{array}{cc}
C & 0 \\
0 & B_{33}
\end{array}\right],
$$

is block diagonal and unitarily similar to $B$; the column spaces of $V=\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$ and $Z$ are each invariant under $B$. We are interested in the eigenstructure of $C$, which is the restriction of $B$ to the column space of $\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$.

Writing out the equation $\Delta C=C \Delta$ from the ( 1,1 ) blocks of Eq. 4 gives the identity

$$
\left[\begin{array}{ll}
L_{1} B_{11} & L_{1} B_{12}  \tag{5}\\
L_{2} B_{21} & L_{2} B_{22}
\end{array}\right]=\left[\begin{array}{ll}
B_{11} L_{1} & B_{12} L_{2} \\
B_{21} L_{1} & B_{22} L_{2}
\end{array}\right]
$$

which tells us that $B_{12}=B_{21}=0$ since $\sigma\left(L_{1}\right) \mathrm{I} \sigma\left(L_{2}\right)=\phi$. Thus, the column spaces of $Y$ and $Y^{C}$ are each invariant under $B, C=Y^{C T} B Y \oplus Y^{T} B Y^{C}$, and $U^{C T} B U=Y^{C T} B Y \oplus Y^{T} B Y^{C} \oplus Z^{T} B Z$. Although there is nothing special about the eigenstructure of a quaternion symmetric matrix, in this case we get something interesting if we assume that $B$ is symmetric: $Y^{C T} B Y=\left(Y^{T} B Y^{C}\right)^{T}$ is similar to $Y^{T} B Y^{C}$, so every block in the Jordan canonical form of $C$ appears an even number of times. In particular, every eigenvalue of $C$ has even multiplicity.

Similar calculations, some with the help of Proposition 2.4 , show that other commutativity-related assumptions about $A B$ have useful consequences for $\Delta C$ : If $A B= \pm B A$, then $\Delta C= \pm C \Delta$; if $A B= \pm B A^{C T}$, then $\Delta C= \pm C \Delta^{C}$; and if $A B= \pm B A^{T}$, then $\Delta C= \pm C\left(L_{2} \oplus L_{1}\right)$. Under natural conditions on the spectra of $L_{1}$ and $L_{2}$, these relations imply that $C$ is block diagonal. Moreover, certain conditions on $B$ ensure various pairings of the eigenvalues of $C$.

Other authors have considered implications of the condition $A B=B A^{T}$ for various classes of matrices (see [2,4,8,9]). The following results have their origin in a study of the spectral properties of quaternion unitary operators induced by ergodic measure preserving transformations $[1,3]$.

## Theorem 4.1

Let $A=U A U^{C T} \in M_{n}(\mathrm{H})$ be a nondegenerate QQN, factored as in Theorem 3.3 with $A=L_{1} \oplus L_{2} \oplus L_{3}$ and $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$. Let $B \in M_{n}(\mathrm{H})$ be given, and set $C=V^{C T} B V$ with $V=\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$.

Suppose that any one of the following conditions is satisfied:
i) $A B=B A$,
ii) $\quad A B=-B A$ and $\sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{2}\right)=\phi$,
iii) $\quad A B=B A^{C T}$ and $\sigma\left(L_{1}\right)$ I $\sigma\left(L_{2}^{C}\right)=\phi$
iv) $\quad A B=-B A^{C T}$ and $\sigma\left(L_{1}\right)$ I $\sigma\left(-L_{2}^{C}\right)=\phi$, or
v) $\quad A B=-B A^{T}, \sigma\left(L_{1}\right)$ I $\sigma\left(-L_{1}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{2}\right)=\phi$.

Then $C=Y^{C T} B Y \oplus Y^{T} B Y^{C}$ is block diagonal. Moreover,
a) If $B^{T}=B$, then each block in the Jordan canonical form of $C$ occurs an even number of times, so every eigenvalue of $C$ has even multiplicity.
b) If $B$ is real and $J_{m}(\lambda)$ is a Jordan block of $C$, then so is $J_{m}\left(\lambda^{C}\right)$. Each Jordan block of $C$ corresponding to a real eigenvalue occurs an even number of times, so each real eigenvalue of $C$ (if any) has even multiplicity.
c) If $B^{T}=-B$ and $J_{m}(\lambda)$ is a Jordan block of $C$, then so is $J_{m}(-\lambda)$. Any nilpotent Jordan block of $C$ occurs an even number of times, so if $C$ is singular, zero is an eigenvalue with even multiplicity.
d) If $B^{C}=-B$ and if $J_{m}(\lambda)$ is a Jordan block of $C$, then so is $J_{m}\left(-\lambda^{C}\right)$. Each Jordan block of $C$ corresponding to a pure imaginary eigenvalue occurs an even number of times, so each pure imaginary eigenvalue of $C$ (if any) has even multiplicity.

## Proof

Under each of the assumptions (i)-(v), inspection of the analog of Eq. 5 in each case shows that the off-diagonal blocks $B_{12}$ and $B_{21}$ are zero.
a) If $B$ is symmetric, then $B_{22}=B_{11}^{T}$, so $C=B_{11} \oplus B_{11}^{T}$. The Jordan canonical form of a square quaternion matrix and its transpose are the same, so every block in the Jordan canonical form of $C$ occurs an even number of times.
b) If $B$ is real, then $B_{22}=\left(Y^{C T} B Y\right)^{C}=B_{11}^{C}$, so the Jordan blocks of $C$ occur in conjugate pairs of the form $J_{m}(\lambda) \oplus J_{m}\left(\lambda^{C}\right)$. If $\lambda$ is real, then its Jordan blocks occur in pairs of the form $J_{m}(\lambda) \oplus J_{m}(\lambda)$, so each real eigenvalue has even multiplicity.
c) If $B$ is skew-symmetric, then $B_{22}=-B_{11}^{T}$, so the Jordan blocks of $C$ occur in pairs of the form $J_{m}(\lambda) \oplus J_{m}(-\lambda)$. If $C$ is singular, then its nilpotent Jordan blocks occur in pairs of the form $J_{m}(0) \oplus J_{m}(0)$, so zero is an eigenvalue with even multiplicity.
d) If $B$ is pure imaginary, then $B=i D$ for some real $D \in M_{n}(\mathrm{H})$ and the assertions follow from (b).

## Note 4.2

Of course, the eigenvalues of $C$ need not be eigenvalues of $B$. However, certain additional conditions ensure that $V^{C T} B Z$ and $Z^{T} B V$ are both zero. $B_{13}, B_{23}, B_{31}$ and $B_{32}$ are all zero, $U^{C T} B U$ is block diagonal, and the eigenvalues of $C$ are also eigenvalues of $B$.

## Theorem 4.3

Let $A=U A U^{C T} \in M_{n}(\mathrm{H})$ be a nondegenerate QQN , factored as in Theorem 3.3, with $A=L_{1} \oplus L_{2} \oplus L_{3}$ and $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$. Let $B \in M_{n}(\mathrm{H})$ be given, and set $C=V^{C T} B V$ with $V=\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$.

Suppose that any one of the following conditions is satisfied:
i) $\quad A B=B A$,
ii) $\quad A B=-B A, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{2}\right)=\phi, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{3}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{3}\right)=\phi$ (these conditions are satisfied if $A$ is coninvolutory or skew-coninvolutory),
iii) $\quad A B=B A^{C T}, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(L_{2}^{C}\right)=\phi, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(L_{3}^{C}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(L_{3}^{C}\right)=\phi$ (these conditions are satisfied if $A$ is skew-quaternion orthogonal, coninvolutory, or skew-coninvolutory).
iv) $\quad A B=-B A^{C T}, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{2}^{C}\right)=\phi, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{3}^{C}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{3}^{C}\right)=\phi$ (these conditions are satisfied if $A$ is quaternion orthogonal, coninvolutory, or skew-coninvolutory), or
v) $\quad A B=-B A^{T}, \sigma\left(L_{1}\right)$ I $\sigma\left(-L_{1}\right)=\phi, \sigma\left(L_{1}\right)$ I $\sigma\left(-L_{3}\right)=\phi, \sigma\left(L_{2}\right)$ I $\sigma\left(-L_{2}\right)=\phi$, and $\sigma\left(L_{2}\right)$ I $\sigma\left(-L_{3}\right)=\phi$ (these conditions are satisfied if $A$ is real, pure imaginary, or skew-symmetric).

Then $U^{C T} B U=Y^{C T} B Y \oplus Y^{T} B Y^{C} \oplus Z^{T} B Z=C \oplus Z^{T} B Z$, every eigenvalue of $C$ is an eigenvalue of $B$, and $C$ satisfies each of the conclusions (a)-(d) of Theorem 4.1.

Certain conditions force the diagonal blocks $B_{11}$ and $B_{22}$ to be zero, and certain conditions on $B$ ensure that the eigenvalues of $C$ are paired.

## Theorem 4.4

Let $A=U A U^{C T} \in M_{n}(\mathrm{H})$ be a nondegenerate QQN , factored as in Theorem 3.3, with $A=L_{1} \oplus L_{2} \oplus L_{3}$ and $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$. Let $B \in M_{n}(\mathrm{H})$ be given, and set $C=V^{C T} B V$ with $V=\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$.

Suppose that any one of the following conditions is satisfied:
i) $\quad A B=-B A, \sigma\left(L_{1}\right)$ I $\sigma\left(-L_{1}\right)=\phi$, and $\sigma\left(L_{2}\right)$ I $\sigma\left(-L_{2}\right)=\phi$,
ii) $\quad A B=B A^{C T}, \sigma\left(L_{1}\right)$ I $\sigma\left(L_{1}^{C}\right)=\phi$, and $\sigma\left(L_{2}\right)$ I $\sigma\left(L_{2}^{C}\right)=\phi$,
iii) $\quad A B=-B A^{C T}, \sigma\left(L_{1}\right)$ I $\sigma\left(-L_{1}^{C}\right)=\phi$, and $\sigma\left(L_{2}\right)$ I $\sigma\left(-L_{2}^{C}\right)=\phi$
iv) $\quad A B=B A^{T}$, or
v) $\quad A B=-B A^{T}$, and $\sigma\left(L_{1}\right)$ I $\sigma\left(-L_{2}\right)=\phi$

Then

$$
C=\left[\begin{array}{cc}
0 & Y^{C T} B Y^{C} \\
Y^{T} B Y & 0
\end{array}\right]
$$

Moreover,
a) Every non-singular Jordan block of $C^{2}$ occurs an even number of times, and every eigenvalue of $C^{2}$ has even multiplicity.
b) If $B$ is either real or pure imaginary, and if $J_{m}(\lambda)$ is a Jordan block of $C$, then so are $J_{m}(-\lambda)$ and $J_{m}\left( \pm \lambda^{C}\right)$. Thus, the eigenvalues of $C$ occur in $\pm$ conjugate quadruplets with the same multiplicities.
c) If $B^{C T}=B$, then the eigenvalues of $C$ are real and occur in $\pm$ pairs with the same multiplicities. In fact they are singular values of $Y^{C T} B Y^{C}$ together with their negatives.

## Proof

Under each of the assumptions (i)-(v), inspection of the analog of Eq. 5 in each case shows that $B_{11}=B_{22}=0$.
a) We have $C^{2}=B_{12} B_{21} \oplus B_{21} B_{12}$, and the non-singular Jordan blocks of $B_{12} B_{21}$ and $B_{21} B_{12}$ are always the same; their nilpotent Jordan structures can be different, but zero is an eigenvalue of the same multiplicity for both. Hence, $C^{2}$ has an even number of zero eigenvalues.
b) If $B$ is real, then $C=\left[\begin{array}{cc}0 & B_{12} \\ B_{12}^{C} & 0\end{array}\right]$. Since every square quaternion matrix is consimilar to a real matrix, there is a real $R$ and a non-singular $S$ such that $B_{12}=S R\left(S^{C}\right)^{-1}$. Let $X \equiv S \oplus S^{C}$ and let $K \equiv \frac{1}{\sqrt{2}}\left[\begin{array}{cc}I & -I \\ I & I\end{array}\right]$, so $K^{-1}=K^{T}$. A calculation reveals that $\left(X K^{-1}\right)^{-1} C\left(X K^{-1}\right)=-R \oplus R$. Thus, if $J_{m}(\lambda)$ is a Jordan block of $C$, then so are $J_{m}(-\lambda), J_{m}\left(\lambda^{C}\right)$, and $J_{m}\left(-\lambda^{C}\right)$.
c) If $B=B^{C T}$, then $C=\left[\begin{array}{cc}0 & B_{12} \\ B_{12}^{C T} & 0\end{array}\right]$. Let $B_{12}=U \Sigma V$ be a singular value decomposition of $B_{12}$, and set $X \equiv U \oplus V^{C T}$. Then $\left(X K^{-1}\right)^{-1} C\left(X K^{-1}\right)=-\Sigma \oplus \Sigma[5$, Theorem 7.3.7]

## Note 4.5

Certain conditions on $L_{1}, L_{2}$ and $L_{3}$ ensure that $U^{C T} B U=C \oplus Z^{T} B Z$, so the eigenvalues of $C$ are also eigenvalues of $B$.

## Theorem 4.6

Let $A=U A U^{C T} \in M_{n}(\mathrm{H})$ be a nondegenerate QQN , factored as in Theorem 3.3, with $A=L_{1} \oplus L_{2} \oplus L_{3}$ and $U=\left[\begin{array}{lll}Y & Y^{C} & Z\end{array}\right]$. Let $B \in M_{n}(\mathrm{H})$ be given, and set $C=V^{C T} B V$ with $V=\left[\begin{array}{ll}Y & Y^{C}\end{array}\right]$.

Suppose that any one of the following conditions is satisfied:
i) $A B=\quad-B A, \quad \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{1}\right)=\phi, \quad \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{3}\right)=\phi, \quad$ and $\quad \sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{2}\right)=\phi$, and $\sigma\left(L_{2}\right)$ I $\sigma\left(-L_{3}\right)=\phi$ (these conditions are satisfied if $A$ is real, pure imaginary, or skew-symmetric).
ii) $\quad A B=B A^{C T}, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(L_{1}^{C}\right)=\phi, \sigma\left(L_{2}\right) \mathrm{I} \sigma\left(L_{2}^{C}\right)=\phi, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(L_{3}^{C}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(L_{3}^{C}\right)=\phi$ (these conditions are satisfied if $A$ is real),
iii) $A B=-B A^{C T}, \quad \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{1}^{C}\right)=\phi, \quad$ and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{2}^{C}\right)=\phi, \quad \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{3}^{C}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{3}^{C}\right)=\phi$ (these conditions are satisfied if $A$ is pure imaginary),
iv) $\quad A B=B A^{T}$, or
v) $\quad A B=-B A^{T}, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{2}\right)=\phi, \sigma\left(L_{1}\right) \mathrm{I} \sigma\left(-L_{3}\right)=\phi$, and $\sigma\left(L_{2}\right) \mathrm{I} \sigma\left(-L_{3}\right)=\phi$ (these conditions are satisfied if $A$ is coninvolutory or skew-coninvolutory),

Then

$$
U^{C T} B U=\left[\begin{array}{cc}
0 & Y^{C T} B Y^{C} \\
Y^{T} B Y & 0
\end{array}\right] \oplus Z^{T} B Z
$$

Every eigenvalue of $C$ is an eigenvalue of $B$, and $C$ satisfies the conclusions (a)-(c) of Theorem 4.4.

## Proof

Proceed as before.

## Note 4.7

The relations $A B= \pm B^{T} A$ and $A B^{T} \pm B A$ also lead to eigenvalue pairings, but via a somewhat different path.

## Lemma 4.8

Let $T \in M_{2 r}(\mathrm{H})$ be given.
a) If $T$ is skew-quaternion Hamiltonian, then every Jordan block of $T$ occurs an even number of times.
b) Suppose $T$ is quaternion Hamiltonian. Then $T^{2}$ is skew-quaternion Hamiltonian. If $J_{m}(\lambda)$ is a nonsingular Jordan block of $T$, then so is $J_{m}(-\lambda)$. Every odd-sized singular Jordan block of $T$ occurs an even number of times, and zero is an eigenvalue of $T$ with even multiplicity.

## Proof

a) The asserted pairing follows from the fact that a skew-quaternion Hamiltonian matrix is similar (via a symplectic similarity) to the direct sum of a matrix and its transpose [7, Theorem 6].
b) If $T$ is quaternion Hamiltonian, block multiplication reveals that $T^{2}$ is skew-quaternion Hamiltonian and that

$$
\left[\begin{array}{cc}
0 & I \\
-I & 0
\end{array}\right]\left[\begin{array}{cc}
E & F \\
G & -E^{T}
\end{array}\right]\left[\begin{array}{cc}
0 & -I \\
I & 0
\end{array}\right]=\left[\begin{array}{cc}
E & F \\
G & -E^{T}
\end{array}\right]^{T}
$$

so $-T$ is similar to the transpose of $T$, and hence to $T$ itself. This observation proves the asserted pairing of the nonsingular Jordan blocks of $T$ and $T^{2}$. One checks that $\left(J_{2 m+1}(0)\right)^{2}$ is similar to $J_{m}(0) \oplus J_{m+1}(0)$ and that $\left(J_{2 m}(0)\right)^{2}$ is similar to $J_{m}(0) \oplus J_{m}(0)$. If $J_{2 m+1}(0)$ is an odd-sized nilpotent Jordan block of $T$, the fact that $T^{2}$ is Skew-Quaternion Hamiltonian means that its Jordan canonical form contains each of the blocks $J_{m}(0)$ and $J_{m+1}(0)$ an even number of times; their respective parities are unaffected by the presence or absence of $J_{2 m}(0)$ in the Jordan form of $T$. Thus, the Jordan form of $T$ must contain an even number of copies of $J_{2 m+1}(0)$.

## Theorem 4.9

Let $A \in M_{n}(\mathrm{H})$ be quaternion normal and let $B \in M_{n}(\mathrm{H})$ be given.
a) Suppose that $A$ is not quaternion symmetric and that $A$ and $B$ satisfy at least one of the four conditions $A B=B^{T} A$ , $A B=-B^{T} A, A B^{T}=B A$, or $A B^{T}=-B A$. Suppose either that $A$ is coninvolutory and factored as in Theorem 3.7(iii), or that $A$ is skew-quaternion coninvolutory and factored as in Theorem 3.7(vii). Let $U^{C T} B U=\left[B_{s t}\right]$ be defined as in eqn. (2). Then $U^{C T} B U=B_{11} \oplus B_{22} \oplus B_{33}$ is block diagonal. If $A B=B^{T} A$ or $A B^{T}=B A$, then every Jordan block of $B_{11} \oplus B_{22}$ occurs with even multiplicity. If $A B=-B^{T} A$ or $A B^{T}=-B A$, and if $J_{m}(\lambda)$ is a Jordan block of $B_{11} \oplus B_{22}$, then so is $J_{m}(-\lambda)$.
b) Suppose that $A \in M_{n}(\mathrm{H})$ is nonzero and skew-quaternion symmetric, factored as in Theorem 3.7(ii).
b1) Suppose that $A B=B^{T} A$ and $B A=A B^{T}$. Then $U^{C T} B U=C \oplus B_{33}$. Moreover, $C$ is Skew-quaternion Hamiltonian, so every block in the Jordan canonical form of $C$ occurs an even number of times.
b2) Suppose that $A B=-B^{T} A$ and $B A=-A B^{T}$. Then $U^{C T} B U=C \oplus B_{33}$. Moreover, $C$ is Quaternion Hamiltonian. If $J_{m}(\lambda)$ is a nonsingular Jordan block of $C$, then so is $J_{m}(-\lambda)$. Every odd-sized singular Jordan block of
$C$ occurs an even number of times, and zero is an eigenvalue of $C$ with even multiplicity. Every Jordan block of $C^{2}$ occurs an even number of times.

## Proof

a) The assumptions ensure that $A$ is a nondegenerate QQN with $L_{2}= \pm\left(L_{1}^{C}\right)^{-1}$. Moreover, $L_{3}$ is non-singular and the diagonal entries of $L_{1}$ lie outside the open unit disk. Using the notation and invoking its conclusions, it suffices to observe that $\left|\lambda_{s} \lambda_{t}\right|>1>\left|\mu_{s} \mu_{t}\right|$ for all $s, t=1 \ldots \ldots r$. Moreover, $B_{11}$ is similar to $\pm B_{22}$, which ensures that the assertions about pairings of the Jordan blocks of $B_{11} \oplus B_{22}$ are correct.
b1) Again, $A$ is a nondegenerate QQN. The diagonal entries of $L_{1}$ are either positive or in the open upper half plane, and $L_{2}=-L_{1}$. The key observation is that, under these conditions, $L_{1}$ is a polynomial in $L_{1}^{2}$, and $L_{1}^{2}$ commutes with $B_{11}$, it follows that $L_{1}$ commutes with $B_{11}$. Thus, $B_{22}^{T}=\left(L_{1}\right)^{-1} B_{11} L_{1}=B_{11}$. Also, $B_{12}^{T}=\left(L_{1}\right)^{-1} B_{12} L_{2}=-\left(L_{1}\right)^{-1} B_{12} L_{1}=-B_{12}$ , so $B_{12}$ is skew-quaternion symmetric. A similar computation shows that $B_{21}$ is also skew-quaternion symmetric, so $C$ is skew-Quaternion Hamiltonian.
b2) One can argue as in (b1).

## References

[1] Gunasekaran, K. and Rajeswari, J. "Quaternion Quasi-Normal Matrices", International Journal of Mathematics Trends and Technology, Vol. 50: 33-35.
[2] Goodson .G.R, " The Inverse-Similarity Problem For Real Orthogonal Matrices", Am Math Mon. 104 (1997) 223-230.
[3] Gunasekaran, K. and Rajeswari, J. "Characterzation of Double Representation of Quaternion Quasi-Normal Matrices". International Journal Of Researchin Advent Technology, Vol. 6 (2018) 149-152.
[4] Hong .Y and Horn .R.A, "A Characterization Of Unitary Congruence", Linear Multilinear Algebra 25 (1989) 105-119.
[5] Horn. R.A and Johnson C.R. "Matrix Analysis", Cambridge University Press, New York. 1985.
[6] Horn. R.A and Johnson C.R. " Topics In Matrix Analysis", Cambridge University Press New York. 1991.
[7] Ikramov .K.D. "Hamiltonian Square Roots Of Skew-Hamiltonian Matrices Revisited, Linear Algebra Appl. 325(2001)101107.
[8] Jacobson .N, "An Application Of E.R. Moore’s Determinant Of A Hermitian Matrix", Bull. Am. Math. Soc. 45(1939) 745748.
[9] Taussky .O, "The Role Of Symmetric Matrices In The Study Of General Matrices", Linear Algebra Appl. 5(1972)147-154.
[10] Gunasekaran, K. and Rajeswari, J. "Quaternion Quasi-Normal Products Of Matrices". International Journal Of Innovatice Research And Advanced Studies. Vol. 5: (2018)67-69.
[11] Gunasekaran, K. and Rajeswari, J. "On Double Representation Of Quaternion Quasi-Normal Matrices", International Journal Of Creative Research Thoughts, Vol 6(2018) 1920-1925.

