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1.  Introduction 

 Any eigenvalues (quaternion eigenvalues) of a real square matrix A come in conjugate pairs, and corresponding 

eigenvectors can be chosen in conjugate pairs ( Ax x=  if and only if 
C C CAx x= ); real eigenvectors of  A can be 

associated with its real eigenvalues.  If  A is diagonalizable, it can therefore be diagonalized in a special way: 
1,A SAS −=

CA L L R=    is diagonal, the diagonal entries of L  (if any) are in the open upper half partition of four dimension structure, 

the diagonal entries of R (if any) are real, [ ]CS Y Y Z=  is non-singular, Y  has the same number of columns as L and 

Z is real. 

 If A is quaternion normal, it can be quaternion unitary diagonalized in the same way: ,CTA UAU=  

CA L L R=    is diagonal, the diagonal entries of L  (if any) are in the open upper half partition of four dimension structure, 

the diagonal entries of R (if any) are real, [ ]CU Y Y Z=  is unitary, Y  has the same number of columns as L and Z is 

real.  This canonical form is different from, but equivalent to, the classical real normal form [5, Theorem 2.5.8] and suggests a 

wide class of generalizations that play a role in the study of eigenvalue pairing theorems that motivated our investigations.  We 

use standard terminology and notation, as in [5,6].  We let be the set of m n matrices with entries in F= ¡  or   and write 

( )n n nM M   .  The set of eigenvalues (spectrum) of ( )nA M   is denoted by ( )A . 

 Two characterizing  properties of a quaternion normal matrix  A  play  an essential role in our discussion:  (a)  A can 

be quaternion unitarily diagonalized and (b)  a nonzero vector x  is a right  − eigenvector of A ( Ax x=  for some scalar 

) if and only if it is a left eigenvector, necessarily with the same eigenvalue (
CT CTx A x= ).  Eigenvectors of a normal matrix 

associated with distinct eigenvalues are necessarily orthogonal.  If A is  quaternion normal, then the quaternion orthogonal 

complement of the span of any collection of eigenvectors is an invariant subspace of A . 

 

2.  Quaternion Quasi unitary matrices 

Definition 2.1 

 A matrix ( )nU M  is said to be r-quaternion quasi unitary (r-QQU) if U is quaternion unitary, 

[ ]CU Y Y Z= , ( )n rY M   , and 2 ( )n n rZ M  − ¡   When 0r = , then U Z= is real orthogonal; when 2r n=  

then 
CU Y Y =   .  When the value of the parameter r is not relevant, we say that U  is QQU.  For a given ( )n rY M    

with quaternion orthonormal columns, the columns of Y need  not be quaternion orthogonal to those of 
CY .  A necessary and 

sufficient condition for 
CY Y   to have quaternion orthonormal columns is that 

CTY Y I= and 0TY Y = , that is, Y has 

quaternion orthonormal columns that are rectangular and isotropic.  If 
CY Y    has quaternion orthonormal columns, then no 

column of  Y can be real since each column of  Y must be quaternion orthogonal to every column of 
CY . 
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 If  
CY Y   has quaternion orthonomal columns and 2n r , then there is always a quaternion 2 ( )n n rX M  −   

such that [ ]CY Y X  (and hence also [ ]C CY Y X ) is quaternion unitary.  However, any such X has an important 

property:  the column spaces of X  and 
CX are the identical namely, the quaternion orthogonal complement of the column 

space of  
CY Y   .  We say that a subspace spanned by the columns of ( )n mX M    is self-conjugate if it is the same as 

the column space of  
CX . 

Lemma 2.2  

  Let 𝑋̂ ( )n mM  
 
have  rank 1m and suppose that the column space of 𝑋̂ is self-conjugate.  Then there is a real 

( )n mZ M    with quaternion orthonormal columns and the same column space as 𝑋̂.  In particular, if 2 0n m r   , 

( )n rY M   , 𝑋̂ 2 ( )n m rM  −  ,         𝑍 ( )n n mM  − ¡ , and 
C

Y Y  𝑋̂ 𝑍] ( )nM   is quaternion unitary, then there 

exists a 2 ( )n m rZ M  − ¡  such that   [𝑌 𝑌𝐶   𝑍 𝑍 ̃]  is quaternion unitary. 

Proof: 

 Since 𝑋̂ has full rank, there is a matrix ( )n mX M    with quaternion orthonormal columns with the same column 

space as that of  𝑋̂.  Since the column space of  𝑋̂, and hence of X , is self-conjugate, there exists a nonsingular ( )rW M 

such that 
CX XW= .  Then, ( )C CT CI X X=

CT CTW X XW=  
CTW W= , so W is quaternion unitary.  Moreover, 

C C CX X W XWW= = , so ( ) 0CX I WW− = .  Since X  has full column rank, we must have 
CWW I= , that is, W is 

quaternion unitary and coninvolutory and hence it is also symmetric [6, Section 6.4]. 

 Let ( )p t be a polynomial such that ( )V p W  is a square root of W .  Then V is quaternion unitary and symmetric, 

and hence it is also coninvolutory.  Moreover, 
2CX XV= so 

1C C CX V X V XV Z− = =   is real.  Since it is obtained from 

X  by a right quaternion unitary transformation, Z  has quaternion orthonormal columns and the same column space as X .   

Note 2.3 

 If the assumption that 𝑋̂  has full rank is omitted in Lemma 2.2, one may still show that its column space has a real 

quaternion orthonormal basis [6, Theorem 6.4.24].  The following three assertions are easily verified. 

Proposition  2.4  

 Let , ( )nU V M 
 
be r-QQU matrices and let ( )nQ M  be real quaternion orthogonal.  Then 

a.  2

0

0

rT CT C

n r

r

I
U U U U I

I
−

 
= =  

 
 is quaternion unitary, symmetric, and coninvolutory,  

b.  
CTUV  is real quaternion orthogonal, and  

c.  QU  is r-QQU. 

 

Proof 

 b.  Suppose 
1 1 1

CU Y Y Z =    and 
2 2 2

CV Y Y Z =    with 1Y , 2 ( )n rY M   .  Then 
CTUV  is a product 

of quaternion unitary matrices and hence is quaternion unitary.  However, 
CTUV  =  

1 2 1 2 1 2

CT C T TYY Y Y Z Z+ +   =  

1 2 1 22 Re( )CT TYY Z Z+  is real, so it is real quaternion orthogonal. 

 

3.  Quaternion Quasi-Normal matrices 

Definition 3.1 

 A matrix ( )nA M   is said to be quaternion quasi-normal (QQN) if (i)  A  is  quaternion normal.  (ii)  
Cx  is an 

eigenvector of A  whenever x  is, and (iii)  the nullspace of A  is self-conjugate, that is 0Ax =  if and only if 0CAx = . 

 Every real quaternion normal matrix is QQN, but so are several other familiar symmetry classes of quaternion normal 

matrices.  If A  is QQN and Q is real quaternion orthogonal, it follows immediately from the definition that 
CA and 

TQAQ  

are both QQN [1].  The basic structure of the eigenspaces of a QQN matrix is described in the following lemma, which leads 

directly to a pleasant canonical form. 

Lemma 3.2  

 Suppose   is a nonzero eigenvalue of a QQN matrix ( )nA M  , and let the columns of Y  be an quaternion 

orthonormal basis of the  -eigenspace of A , so that AY Y= .  Then there is a nonzero scalar   such that 

 :nx Ax x =   =   :n C Cx A x x = .  If  = , then the   -eigenspace of A  is self-conjugate and 
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C CAY Y= ; if    , then 
C CAY Y= , the columns of 

CY  are an quaternion orthonormal basis for the 
C -eigenspace 

of 
CA  and 

CY Y    has quaternion orthonormal columns. 

Proof 

 Let x  be a unit  -eigenvector of A , so there is some scalar   such that 
C CAx x= that is, 

C CA x x= .  Since 

the conjugate of 
Cx  is not in the nullspace of  A , it follows that 0  .  We claim that the  -eigenspace of A  and the 

C

-eigenspace of 
CA  have  the same dimension. 

 Since A  is QQN if and only if  
CA  is QQN [10], for purposes of obtaining a contradiction it suffices to suppose that 

the  -eigenspace of A  has dimension greater than that of the
C -eigenspace of 

CA .  Suppose u is a unit vector in  the  -

eigenspace of A  that is quaternion orthogonal to x , so ,Ax x=  ,Au u=  ,C CAx x= and  there is some scalar v such 

that 
C CAu vu= .  But 0x u+   and ( )A x u+   =  ( )x u + ,  so 

C CAx Au+   =  ( )CA x u+  =  ( )Cx u +   =  

C Cx u +   for some scalar  .  It follows that v = = .  Thus, if the columns of  Y  are a quaternion orthonormal basis of 

the  -eigenspace of A  (so AY Y= ), then 
C CAY Y= and the column space of 

CY  is contained in the
C -eigenspace 

of 
CA .  This shows that the dimension of the 

C -eigenspace of 
CA cannot be less than that of the -eigenspace of A , so 

these two eigenspaces must have the same dimension.  Moreover, this argument shows that each eigenspace is the conjugate of 

the other.  If  = , the eigenspace is self-conjugate; if    normality of A  ensures that the two eigenspaces are quaternion 

orthogonal. 

Theorem 3.3 

 A matrix ( )nA M   is QQN if and only if there is a nonnegative integer r , a r -quaternion quasi-unitary matrix 

CU Y Y Z =   ,  and a diagonal matrix A  = 1 2 3L L L  such that A  =  
CTUAU , 1 2, ( )rL L M   are non-singular, 

and there are nonnegative integers f  and g ,  positive integers 1...... fn n , 1...... gm m , and 2 f g+  distinct scalars 1...... f 

, 1...... f  , 1...... gv v  such that 
1 ...... fn n+ +  =  r , 1 ...... gm m+  =  2n r− ,  1L  =  

11 ......
fn f nI I   , 2L   =  

11 ......
fn f nI I    and 3L  =  

11 ......
gm g mv I v I  . 

Proof  

 Suppose A  is QQN.  Since the nullspace of a QQN matrix is self-conjugate, Lemma 2.2 ensures that if A  is singular 

then there is a real matrix Z  with quaternion orthonormal columns that span the nullspace of A .  If the column space of Z  is 

all of 
n  then A  =  0 TZ Z  and we are done.  If not, let   be any eigenvalue of A  acting on the quaternion orthogonal 

complement of the column space of Z  and let the columns of Y  be a quaternion orthonormal basis for the   –eigenspace of 

A .  Lemma 3.2 ensures that either the column space of Y  is self-conjugate or there is a nonzero scalar      such that the 

column space of 
CY  is the 

C –eigenspace of 
CA .  In the first case, replace Y  with a real matrix with quaternion orthonormal 

columns and the same column space and append it to Z , which then is a real matrix with quaternion orthonormal columns; in 

the second case, the matrix 
CY Y Z    has quaternion orthonormal columns. 

 If the column space of 
CY Y Z    is all of  

n , we are done.  If not, proceed in the same way to consider any 

eigenvalue of A  acting on the quaternion orthogonal complement of the column space of 
CY Y Z   .  Augment either Z  

or Y  and 
CY  as before and continue until this process exhausts the finitely many distinct eigenvalues of A .  At each stage, 

the construction ensures that any new eigenvalue considered is distinct from any eigenvalue of A  previously encountered, so 

we obtain a QQN matrix that diagonalizes A  and gives a representation of the asserted form. 

 Conversely, suppose that A  has a representation of the asserted form.  Any eigenvector x  of A  is in one and only one 

eigenspace of A , which is spanned by a set of contiguous columns of U corresponding to a unique diagonal block in A .  But 

the span of each such set of contiguous columns is either self-conjugate (the nullspace of A  is of this type), or is the conjugate 

of an eigenspace of A  corresponding to a different eigenvalue.  In either event, the conjugate of x  is an eigenvector of A . 

Note 3.4 

 QQN matrices have polar-type decompositions of all three classical types in which the factors commute. 

 

Theorem 3.5  

 Let ( )nA M   be  QQN.  Then 

 a.  A commutes with 
CTA and A PV VP= =  with P  positive semidefinite and V  quaternion unitary. 
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 b.  A commutes with 
TA and A QS SQ= =  with Q  quaternion orthogonal and S   symmetric. 

 c.  A commutes with 
CA  (that is, 

CAA  is real ) and A RE ER= =  with R  real and E   coninvolutory. 

 

Proof 

 

 Let 
CTA UAU=  be QQN, with 1 2 3L LA L =  and a conformal QQU matrix U .  For any given nonzero complex 

number z , we write 
iz re =  for a unique 0r   and a unique [0,2  𝜋 ) ; we represent 0z =  with 0r =  and 0 =  

and write 
00 0 ie= .  For any given diagonal matrix D   =  1( ...... )pdiag d d   =  1

1( ...... )pii

pdiag re r e


  we define 
1/2D      

/21/2

1( ...... )pii

pdiag r e r e


+ + ,  D      1( ...... )pdiag r r , and ( )D      1( ...... )pii
diag e e


.  The following factors 

give the asserted decompositions of A : 

 

(a)  P  =  
1 2 3( ) CTU L L L U  and V  =  

1 2 3( ( ) ( ) ( )) CTU L L L U    

(b)  Q   =  
1/2 1/2 1/2 1/2

2 1 1 2( ) CTU L L L L I U− −   and  S   =  
1/2 1/2 1/2 1/2

2 1 2 1 3( ) CTU L L L L L U  , and 

(c)  R   =  
1/2 1/2 1/2 1/2

2 1 2 1 3(( ) ( ) )C C CTU L L L L L U   and                                                                                          

      E  =  
1/2 1/2 1/2 1/2

2 1 2 1 3(( ) ( ) ( ))C C CTU L L L L L U− −   

 

Note 3.6 

 

 Finally, we observe that quaternion normal matrices in all of the familiar symmetry classes are QQN. 

 

Theorem 3.7  

 

 Let ( )nA M   be quaternion normal.  In each of the following cases, A  is QQN, U  is r-QQU, 
CTA UAU= ,  

1 2 3A L L L=   , and the direct summands sL  can be chosen to have the indicated pattern of eigenvalues: 

 

i)    A is real ( )CA A= :  the diagonal entries of 1L lie in the open upper half plane, 2 1

CL L=   and  the diagonal entries of 

3L   

       are real. 

 

ii)    A is skew-symmetric ( )TA A= − :  the diagonal entries of 1L  are either positive or lie in the open upper  half  plane,  

       2 1L L= −  and 3 0L = . 

 

iii)   A is coninvolutory 
1( )CA A−= : the diagonal entries of  1L  lie in the open exterior of the  unit disc,  

1

2 1( )CL L −=  and 

the  

        diagonal entries of 3L  have modulus one. 

 

iv)   A is quaternion orthogonal 
1( )TA A−= :  the diagonal entries of  1L  lie in the open  exterior of the unit  disc together 

with   

        the open circular arc : 0ie     , 
1

2 1L L−=  and 
1 23 m mL I I=  − . 

 

v)    A is skew- quaternion orthogonal
1( )TA A−= − :  the diagonal entries of  1L lie in the open exterior of the  unit disc 

together  

        with the open circular arc  : / 2 3 / 2ie      , 
1

2 1L L−= −  and   
1 23 m mL iI iI=  − . 

 

vi)   A is pure imaginary ( )CA A= − :  the diagonal entries of  1L  lie in the open left half  plane, 2 1

CL L= −  and the 

diagonal   

        entries of 3L  are pure imaginary. 
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vii)  A is skew-coninvolutory 
1( )CA A−= − : the diagonal entries of  1L  lie in the  open exterior of the unit  disc,  

        
1

2 1( )CL L −= −  and the diagonal entries of 3L  have modulus   one. 

 

viii)  A is symmetric ( )TA A= : 0r = , 3L  is a diagonal matrix with no restrictions on its entries, and  U Z=  is real   

         quaternion orthogonal. 

 

Proof 

 

 In each of the following cases, let x  be a unit vector such that Ax x= .  In order to show that A  is QQN, it suffices 

to show that 
Cx  is an eigenvector of A . 

 

i) 
CAx  = ( )CAx  =  ( )Cx  =

C Cx , so 
Cx  is  an eigenvector corresponding to the  eigenvalue   C . 

ii) 
Tx A  = ( )TAx−  = ( )Tx−  = 

Tx− , so 
Cx  is  an eigenvector corresponding to the  eigenvalue − . 

iii) x  = 
CA Ax  = 

CA x , so  
CAx  = 

1( )C Cx −
; 

Cx  is an eigenvector corresponding to the  eigenvalue  
1( )C −

.  

 

iv) x  = 
TA Ax  = 

TA x , so  
Tx A  = 

1 Tx −
 and hence 

CAx  = 
1 Cx −

 ; 
Cx  is an eigenvector  corresponding to the   

             eigenvalue 
1 −
. 

 

v) x−  = 
TA Ax  = 

TA x , so 
Tx A  = 

1 Tx −−  and hence  
CAx  = 

1 Cx −− ; 
Cx  is an eigenvector corresponding to 

the eigenvalue  
1 −− .  

 

vi) iA  is real. 

 

vii) iA  is coninvolutory. 

 

viii) 
Tx A  = ( )TAx  = ( )Tx = 

Tx , so  
Cx  is an eigenvector corresponding to the eigenvalue  . 

 

Note 3.8 

 

 In the canonical form described in Theorem 3.3, the nonnegative integer 2r  is the sum of  the dimensions of the isotropic  

eigenspaces of A , or, equivalently, 2n r− is the sum of the dimensions of  the self-conjugate eigenspaces of A  .  Thus, r is  

uniquely determined by A .  We say that a QQN matrix A  is degenerate if 0r = , which Theorem 3.7 (viii) ensures is the  

case if and only if A  is symmetric; otherwise, we say that A  is nondegenerate.   

 

4.  Eigenvalue pairing theorems 

 

 Throughout this section, 
CTA UAU= ( )nM   is a nondegenerate QQN, factored as in Theorem 3.3 with A  = 

1 2 3L L L   and 
CU Y Y Z =   ;  let ( )nB M   be given.  If A   is in one of the seven nondegenerate classes 

enumerated in Theorem 3.7 (i)-(viii), we assume without loss of generality that its eigenvalues have been ordered to achieve the 

locations stated there for the diagonal entries of 1 2,L L  and 3L . 

 

 To illustrate the realm of results we wish to study, consider the prototype case of ordinary commutativity:  AB BA= .  

Then 
CT CTUAU B BUAU= , so 

 

   ( )CTA U BU   =  ( )CTU BU A                        ......(1) 

 

Let 

 
CTU BU   =  

CT CT C CT

T T C T

T T C T

Y BY Y BY Y BZ

Y BY Y BY Y BZ

Z BY Z BY Z BZ

 
 
 
 
 

     

11 12 13

21 22 23

31 32 33

B B B

B B B

B B B

 
 
 
  

                   .......(2) 
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   V      
2 ( )C

n rY Y M 
    , 

 

C      
CTV BV   =  

CT CT C

T T C

Y BY Y BY

Y BY Y BY

 
 
 

  =  
11 12

2

21 22

( )r

B B
M

B B

 
  

 
                     ......(3) 

 

and       1 2 2 ( )rL L M   .  Writing out Eq.1 in block form gives the identity 

 

 3 3 33

( )

( )

CT

T

C V BZ

L Z BV L B

  
 
 

  =  
3

33 3

( )

( )

CT

T

C V BZ L

Z BV B L

 
 

 
          .......(4) 

 

Because 1 2,L L  and 3L  (and hence also   and 3L ) have pairwise disjoint spectra, Sylvester’s Theorem[6, Theorem 4.4.6] and 

equality of the (1,2) blocks in Eq.4, as well as the (2,1) blocks, implies that 0CTV BZ =  and 0TZ BV = .  Thus, 

 

   
CTU BU   =  

CT

T T

C V BZ

Z BV Z BZ

 
 
 

  =  

33

0

0

C

B

 
 
 

, 

 

is block diagonal and unitarily similar to B ; the column spaces of 
CV Y Y =    and Z  are each invariant under B .  We 

are interested in the eigenstructure of C , which is the restriction of B  to the column space of 
CY Y   .  

 

 Writing out the equation C C =   from the (1,1) blocks of Eq.4 gives the identity 

 

   
1 11 1 12

2 21 2 22

L B L B

L B L B

 
 
 

  =  
11 1 12 2

21 1 22 2

B L B L

B L B L

 
 
 

    .......(5) 

 

which tells us that 12 21 0B B= =  since 1 2( ) ( )L L  =I .  Thus, the column spaces of Y  and 
CY are each invariant under 

,B C  = 
CT T CY BY Y BY , and 

CTU BU  =  
CT T C TY BY Y BY Z BZ  .  Although there is nothing special about the 

eigenstructure of a quaternion symmetric matrix, in this case we get something interesting if we assume that  B  is symmetric:  
CTY BY  =  ( )T C TY BY  is similar to 

T CY BY , so every block in the Jordan canonical form of C  appears an even number of 

times.  In particular, every eigenvalue of C  has even multiplicity. 

 

 Similar calculations, some with the help of Proposition 2.4, show that other commutativity-related assumptions about 

AB  have useful consequences for C :  If AB BA=  , then C C =   ; if 
CTAB BA=  , then 

CC C =   ; and if 
TAB BA=  , then 2 1( )C C L L =   .  Under natural conditions on the spectra of 1L  and 2L , these relations imply that 

C  is block diagonal.  Moreover, certain conditions on B  ensure various pairings of the eigenvalues of  C . 

 

 Other authors have considered implications of the condition 
TAB BA=  for various classes of matrices (see [2,4,8,9]).  

The following results have their origin in a study of the spectral properties of quaternion unitary operators induced by ergodic 

measure preserving transformations[1,3].  

 

Theorem 4.1 

 

 Let ( )CT

nA UAU M=    be a nondegenerate QQN, factored as in Theorem 3.3 with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   . 

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =  BA , 

ii) AB  =  BA−  and 1 2( ) ( )L L  − =I , 
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iii) AB  =  
CTBA and 

1 2( ) ( )CL L  =I  

iv) AB  =  
CTBA− and 1 2( ) ( )CL L  − =I , or 

v) AB  =  
TBA− , 1 1( ) ( )L L  − =I ,  and 2 2( ) ( )L L  − =I . 

 

 Then C  =  
CT T CY BY Y BY  is block diagonal.  Moreover, 

 

a) If 
TB B= , then each block in the Jordan canonical form of C occurs an even number of times, so every eigenvalue of 

C  has even multiplicity. 

 

b) If B  is real and ( )mJ   is a Jordan block of C , then so is ( )C

mJ  .  Each Jordan block of C corresponding to a real 

eigenvalue occurs an even number of times, so each real eigenvalue of C  (if any) has even multiplicity. 

 

c) If 
TB B= −  and ( )mJ   is a Jordan block of C , then so is ( )mJ − .  Any nilpotent Jordan block of C  occurs an 

even number of times, so if C  is singular, zero is an eigenvalue with even multiplicity. 

 

d) If 
CB B= −  and if ( )mJ   is a Jordan block of C , then so is ( )C

mJ − .  Each Jordan block of C  corresponding to 

a pure imaginary eigenvalue occurs an even number of times, so each pure imaginary eigenvalue of C  (if any) has even 

multiplicity. 

 

Proof 

 

 Under each of the assumptions (i)-(v), inspection of the analog of Eq.5 in each case shows that the off-diagonal blocks 

12B  and 21B  are zero. 

 

 a)     If B  is symmetric, then 22 11

TB B= , so C  =  11 11

TB B  .  The Jordan canonical form of a square quaternion matrix 

and its transpose are the same, so every block in the Jordan canonical form of C  occurs an even number of times. 

 

 b)     If B  is real, then 
22 11( )CT C CB Y BY B= = , so the Jordan blocks of C  occur in conjugate pairs of the form 

( ) ( )C

m mJ J  .  If   is real, then its Jordan blocks occur in pairs of the form ( ) ( )m mJ J  , so each real eigenvalue 

has even multiplicity. 

 

 c)     If B  is skew-symmetric, then 
22 11

TB B= − , so the Jordan blocks of C  occur in pairs of the form 

( ) ( )m mJ J  − .  If C  is singular, then its nilpotent Jordan blocks occur in pairs of the form (0) (0)m mJ J , so zero is 

an eigenvalue with even multiplicity. 

 

 d)     If B is pure imaginary, then B iD=  for some real ( )nD M   and the assertions follow from (b). 

 

Note 4.2 

 

 Of course, the eigenvalues of C  need not be eigenvalues of B .  However, certain additional conditions ensure that 
CTV BZ  and 

TZ BV are both zero.  13B , 23B , 31B  and 32B  are all zero, 
CTU BU  is block diagonal, and the eigenvalues of 

C  are also eigenvalues of  B . 

 

Theorem 4.3 

 

 Let ( )CT

nA UAU M=    be a nondegenerate QQN, factored as in Theorem 3.3, with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   . 

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =  BA , 
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ii) AB  =  BA− , 1 2( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , and 2 3( ) ( )L L  − =I  (these conditions are 

satisfied if A  is coninvolutory or skew-coninvolutory), 

 

iii) AB  =  
CTBA , 

1 2( ) ( )CL L  =I , 
1 3( ) ( )CL L  =I , and 

2 3( ) ( )CL L  =I (these conditions are satisfied 

if A is skew-quaternion orthogonal, coninvolutory, or skew-coninvolutory). 

 

iv) AB  =  
CTBA− , 1 2( ) ( )CL L  − =I , 1 3( ) ( )CL L  − =I , and 

2 3( ) ( )CL L  − =I  (these conditions are 

satisfied if A is quaternion orthogonal, coninvolutory, or skew-coninvolutory), or 

 

v) AB  =  
TBA− , 1 1( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , 2 2( ) ( )L L  − =I , and 2 3( ) ( )L L  − =I  

(these conditions are satisfied if A is real, pure imaginary, or skew-symmetric). 

 

 Then 
CTU BU   =  

CT T C TY BY Y BY Z BZ    =  
TC Z BZ , every eigenvalue of C  is an eigenvalue of  B , 

and C  satisfies each of the conclusions (a)-(d) of Theorem 4.1. 

 

 Certain conditions force the diagonal blocks 11B  and 22B  to be zero, and certain conditions on  B  ensure that the 

eigenvalues of C  are paired. 

 

Theorem 4.4 

 

 Let ( )CT

nA UAU M=   be a nondegenerate QQN, factored as in Theorem 3.3, with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   .  

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =   BA− , 1 1( ) ( )L L  − =I , and 2 2( ) ( )L L  − =I , 

ii) AB  =  
CTBA , 

1 1( ) ( )CL L  =I , and 
2 2( ) ( )CL L  =I ,  

iii) AB  =  
CTBA− , 1 1( ) ( )CL L  − =I , and 

2 2( ) ( )CL L  − =I , 

iv) AB  =  
TBA , or 

v) AB  =  
TBA− , and 1 2( ) ( )L L  − =I . 

 

 Then C   =  
0

0

CT C

T

Y BY

Y BY

 
 
 

 

 Moreover, 

a) Every non-singular Jordan block of 
2C occurs an even number of times, and every eigenvalue of 

2C  has even 

multiplicity. 

 

b) If  B is either real or pure imaginary, and if ( )mJ   is a Jordan block of  C , then so are ( )mJ −  and ( )C

mJ  .  

Thus, the eigenvalues of C occur in   conjugate quadruplets with the same multiplicities. 

 

c) If 
CTB  =  B , then the eigenvalues of C are real and occur in   pairs with the same multiplicities.  In fact they are 

singular values of 
CT CY BY together with their negatives. 

 

Proof 

 

 Under each of the assumptions (i)-(v), inspection of the analog of Eq.5 in each case shows that 11 22 0B B= = . 
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 a)     We have 
2C  =  12 21 21 12B B B B , and the non-singular Jordan blocks of 12 21B B and 21 12B B are always the same; 

their nilpotent Jordan structures can be different, but zero is an eigenvalue of the same multiplicity for both.  Hence, 
2C  has an 

even number of zero eigenvalues. 

 

 b)     If B  is real, then C  =  
12

12

0

0C

B

B

 
 
 

.  Since every square quaternion matrix is consimilar to a real matrix, there is 

a real R  and a non-singular S such that  12B  =  
1( )CSR S −
.  Let X     

CS S  and let K     
1

2

I I

I I

− 
 
 

,  so 

1 TK K− = .  A calculation reveals that 
1 1 1( ) ( )XK C XK− − −

 =  R R−  .  Thus, if ( )mJ   is a Jordan block of C , then so 

are ( )mJ − , ( )C

mJ  , and ( )C

mJ − .   

 

 c)     If 
CTB B= , then C  =  

12

12

0

0CT

B

B

 
 
 

.  Let 12B U V=  be a singular value decomposition of 12B , and set 

CTX U V  .  Then 
1 1 1( ) ( )XK C XK− − −

 =  − [5, Theorem 7.3.7] 

 

Note 4.5 

 

 Certain conditions on 1L , 2L  and 3L  ensure that 
CTU BU  =  

TC Z BZ , so the eigenvalues of C are also 

eigenvalues of  B . 

 

Theorem 4.6 

 

 Let ( )CT

nA UAU M=   be a nondegenerate QQN, factored as in Theorem 3.3, with 1 2 3A L L L=    and 

CU Y Y Z =   .  Let ( )nB M   be given, and set 
CTC V BV=  with 

CV Y Y =   .  

 

 Suppose that any one of the following conditions is satisfied: 

 

i) AB  =   BA− , 1 1( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , and 2 2( ) ( )L L  − =I , and 

2 3( ) ( )L L  − =I (these conditions are satisfied if A  is real, pure imaginary, or skew-symmetric). 

 

ii) AB   =  
CTBA , 

1 1( ) ( )CL L  =I ,  
2 2( ) ( )CL L  =I ,  

1 3( ) ( )CL L  =I , and 
2 3( ) ( )CL L  =I  

(these conditions are satisfied if A is real), 

 

iii) AB  =  
CTBA− , 1 1( ) ( )CL L  − =I , and 

2 2( ) ( )CL L  − =I , 1 3( ) ( )CL L  − =I , and 

2 3( ) ( )CL L  − =I  (these conditions are satisfied if A is pure imaginary), 

 

iv) AB  =  
TBA , or 

 

v) AB  =  
TBA− , 1 2( ) ( )L L  − =I , 1 3( ) ( )L L  − =I , and 2 3( ) ( )L L  − =I (these conditions are 

satisfied if A  is coninvolutory or skew-coninvolutory), 

 

 Then 
CTU BU   =  

0

0

CT C

T

T

Y BY
Z BZ

Y BY

 
 

 
 

Every eigenvalue of C  is an eigenvalue of B , and C  satisfies the conclusions (a)-(c) of Theorem 4.4. 

 

Proof 

 

 Proceed as before. 
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Note 4.7 

 

 The relations 
TAB B A=   and 

TAB BA  also lead to eigenvalue pairings, but via a somewhat different path. 

 

Lemma 4.8 

 

 Let 2 ( )rT M   be given. 

 

a) If T  is skew-quaternion Hamiltonian, then every Jordan block of T occurs an even number of times.   

 

b)   Suppose T is quaternion Hamiltonian.  Then 
2T is skew-quaternion Hamiltonian.  If ( )mJ  is a nonsingular Jordan 

block of T , then so is ( )mJ − .  Every odd-sized singular Jordan block of T occurs an even number of times, and zero is an 

eigenvalue of T with even multiplicity. 

 

Proof 

 

a) The asserted pairing follows from the fact that a skew-quaternion Hamiltonian matrix is similar (via a symplectic 

similarity) to the direct sum of a matrix and its transpose  [7, Theorem 6]. 

 

b) If  T  is quaternion Hamiltonian, block multiplication reveals that 
2T  is skew-quaternion Hamiltonian and that  

 

0

0

I

I

 
 
− 

  
T

E F

G E

 
 

− 
  

0

0

I

I

− 
 
 

  =  

T

T

E F

G E

 
 

− 
, 

 

so T− is similar to the transpose of  T , and hence to  T  itself.  This observation proves the asserted pairing of the nonsingular 

Jordan blocks of  T and 
2T .  One checks that 

2

2 1( (0))mJ +
is similar to 1(0) (0)m mJ J +  and that 

2

2( (0))mJ  is similar to 

(0) (0)m mJ J .  If 2 1(0)mJ +  is an odd-sized nilpotent Jordan block of  T , the fact that 
2T  is Skew-Quaternion Hamiltonian 

means that its Jordan canonical form contains each of the blocks (0)mJ  and 1(0)mJ +  an even number of times; their respective 

parities are unaffected by the presence or absence of 2 (0)mJ  in the Jordan form of  T .  Thus, the Jordan form of  T must 

contain an even number of copies of 2 1(0)mJ + . 

 

Theorem 4.9 

 

 Let ( )nA M   be quaternion normal and let ( )nB M   be given. 

 

a) Suppose that A is not quaternion symmetric and that A  and B  satisfy at least one of the four conditions AB  =  
TB A

, AB  =  
TB A− , 

TAB  =  BA , or 
TAB  =  BA− .  Suppose either that A  is coninvolutory and factored as in Theorem 3.7(iii), 

or that A  is skew-quaternion coninvolutory and factored as in Theorem 3.7(vii).  Let  CT

stU BU B=  be defined as in eqn. 

(2).  Then 
CTU BU  =  11 22 33B B B  is block diagonal.  If AB  =  

TB A  or 
TAB  =  BA , then every Jordan block of 

11 22B B  occurs with even multiplicity.  If AB  = 
TB A− or 

TAB  = BA− , and if ( )mJ   is a Jordan block of 11 22B B , 

then so is ( )mJ − . 

 

b) Suppose that ( )nA M   is nonzero and skew-quaternion symmetric, factored as in Theorem 3.7(ii).  

 

b1)  Suppose that  AB  =  
TB A  and BA  =  

TAB .  Then 
CTU BU  =  33C B .  Moreover, C is Skew-quaternion 

Hamiltonian, so every block in the Jordan canonical form of  C  occurs an even number of times. 

 

b2) Suppose that AB  =  
TB A− and  BA  = 

TAB− .  Then  
CTU BU   =  33C B .  Moreover, C  is Quaternion 

Hamiltonian.  If ( )mJ   is a nonsingular Jordan block of C , then so is  ( )mJ − .  Every odd-sized singular Jordan block of 
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C  occurs an even number of times, and zero is an eigenvalue of C  with even multiplicity.  Every Jordan block of 
2C  occurs 

an even number of times. 

 

Proof 

 

a) The assumptions ensure that A  is a nondegenerate QQN with 2L = 
1

1( )CL − .  Moreover, 3L is non-singular and the 

diagonal entries of 1L lie outside the open unit disk.  Using the notation and invoking its conclusions, it suffices to observe that 

1s t s t     for all , 1......s t r= .  Moreover, 11B is similar to 22B , which ensures that the assertions about pairings 

of the Jordan blocks of 11 22B B  are correct. 

 

b1) Again, A  is a nondegenerate QQN.  The diagonal entries of  1L  are either positive or in the open upper half plane, and 

2L  = 1L− .  The key observation is that, under these conditions, 1L  is a polynomial in 
2

1L , and 
2

1L commutes with 11B , it 

follows that  1L commutes with  11B .  Thus, 
22

TB  = 
1

1 11 1( )L B L−
 = 11B .  Also, 12

TB  = 
1

1 12 2( )L B L−
 = 

1

1 12 1( )L B L−−  = 12B−

, so 12B is skew-quaternion symmetric.  A similar computation shows that 21B is also skew-quaternion symmetric, so C  is 

skew-Quaternion Hamiltonian. 

 

b2) One can argue as in (b1).  
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