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Abstract - This paper provides a method for solving systems of first order ordinary differential equations by using 

eigenvalues and eigenvectors. Solutions will be obtained through the process of transforming a given matrix into a 

diagonal matrix. 
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1. INTRODUCTION 

The first major problem of linear algebra is to understand how to solve the basis linear system Ax = b and what the solution 

means. We have explored this system from three points of view: from an operational point of view (the mechanics of 

computing solutions), from the perspective of matrix theory and from the vantage of vector space theory. The second major 

problem of linear algebra is the eigenvalue problem which is more sophisticated. [9] 

Computing eigenvalues boils down to solving a polynomial equation. But determining solutions to polynomial equations can 

be a formidable task. It was proven in the nineteenth century that it’s impossible to express the roots of a general polynomial 

of degree five or higher using radicals of the coefficients. This means that there does not exist a generalized version of the 

quadratic formula for polynomials of degree greater than four, and general polynomial equations cannot be solved by a finite 

number of arithmetic operations involving +, −, × and ÷. Unlike solving 𝐴𝑿 =  𝑏, the eigenvalue problem generally requires 

an infinite algorithm, so all practical eigenvalue computations are accomplished by iterative methods.[2] 

Many applications of matrices in both engineering and science utilize eigenvalues and, sometimes, eigenvectors. Systems of 

first order ordinary differential equations arise in many areas of mathematics and engineering. A number of techniques have 

been developed to solve such systems of equations; for example the Laplace transform. In this paper, we shall use eigenvalues 

and eigenvectors to obtain the solution. 

 

2. OBJECTIVES  

General objective 

The general objective of this study is to develop alternative method for solving systems of first order ordinary differential 

equations. 

Specific objective 

The specific objective of this study is to solve systems of first order ordinary differential equations. 

 

3. THE EIGENVALUE PROBLEM 

3.1. Diagonalization of a Square Matrix 

Let 𝐴 be an 𝑛 × 𝑛 matrix. So, what we really need to know is how the powers of 𝐴, say 𝐴𝑘, behave? In general, this is very 

hard, but here is an easy case we can handle: 

What if 𝐴 = [𝑎𝑖𝑗  ] is diagonal?  

Since we’ll make extensive use of diagonal matrices, let’s recall a notation that the matrix 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, …, 𝜆𝑛} is the 𝑛 × 𝑛 

diagonal matrix with entries 𝜆1, 𝜆2, …, 𝜆𝑛 down the diagonal. For example, 

𝑑𝑖𝑎𝑔 {𝜆1, 𝜆2, 𝜆3} = [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] 

By matching up the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column of A, we see that the only time we could have a nonzero entry in 𝐴2 is when 𝑖 = 𝑗, 

and in that case the entry is 𝑎𝑖𝑖
2 . A similar argument applies to any power of 𝐴. In summary, we have this handy fact. 

Theorem 3.1.1’2 

Let 𝐷 = 𝑑𝑖𝑎𝑔{𝜆1, 𝜆2, … , 𝜆𝑛} be a diagonal matrix. Then, 𝐷𝑘 = 𝑑𝑖𝑎𝑔{𝜆𝑘
1, 𝜆𝑘

2, … , 𝜆𝑘
𝑛}, where 𝑘 is a positive integer. 

Let’s now consider a 3 × 3 matrix A. If we could find three linearly independent eigenvectors 𝒗𝟏, 𝒗𝟐 and 𝒗𝟑 corresponding to 

the eigenvalues 𝜆1, 𝜆2 and 𝜆3, we would have 𝐴𝒗𝟏 = 𝜆1𝒗𝟏,  𝐴𝒗𝟐 = 𝜆2𝒗𝟐, and 𝐴𝒗𝟑 = 𝜆3𝒗𝟑. In matrix form, we have 

𝐴[𝒗𝟏, 𝒗𝟐, 𝒗𝟑] = [𝒗𝟏, 𝒗𝟐, 𝒗𝟑] [

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

] = [𝒗𝟏, 𝒗𝟐, 𝒗𝟑]𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, 𝜆3] 

Now, set 𝑃 = [𝒗𝟏, 𝒗𝟐, 𝒗𝟑] and 𝐷 = 𝑑𝑖𝑎𝑔[𝜆1, 𝜆2, 𝜆3]. Then, 𝑃 is invertible since the columns of 𝑃 are linearly independent. 

Multiplying both sides of 𝐴𝑃 = 𝑃𝐷 by 𝑃−1 to the left, we get 𝑃−1𝐴𝑃 = 𝐷. This is a beautiful equation, because it makes the 

powers of 𝐴 simple to understand. The procedure we just went through is reversible as well. In other words, if 𝑃 is an 

invertible matrix such that 𝑃−1𝐴𝑃 = 𝐷, then we deduce that 𝐴𝑃 = 𝑃𝐷 and conclude that the columns of 𝑃 are linearly 
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independent eigenvectors of 𝐴. We make the following definition and follow it with a simple but key theorem relating similar 

matrices. 

Definition 3.1.1 
Let 𝐴 and 𝐵 are square matrices of the same order. Then, A is said to be similar to B if there exists an invertible matrix 𝑃 such 

that 𝑃−1𝐴𝑃 = 𝐵. The matrix 𝑃 is called a similarity transformation matrix. 

Note that if 𝐴 is similar to 𝐵, then 𝐵 is similar to 𝐴 and the two matrices are called similar matrices. 

Definition 3.1.2 
The matrix 𝐴 is diagonalizable if it is similar to a diagonal matrix, that is, there is an invertible matrix 𝑃 and diagonal matrix 𝐷 

such that 𝑃−1𝐴𝑃 = 𝐷. In this case we say that 𝑃 is a diagonalizing matrix for 𝐴 or that 𝑃 diagonalizes 𝐴. 

We can be more specific about when a matrix is diagonalizable. As a first step, notice that the calculations that we began can 

easily be written in terms of an 𝑛 × 𝑛 matrix instead of a 3 × 3 matrix. What these calculations prove is the following basic 

fact. 

Theorem 3.1.2 

The 𝑛 × 𝑛 matrix 𝐴 is diagonalizable if and only if there exists a linearly independent set of eigenvectors 𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒏 of A, 

in which case 𝑃 = [𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒏] is a diagonalizing matrix for 𝐴. 

In general we have the following steps to digonalize a matrix 𝐴 if possible.  

Let 𝐴 be an 𝑛 × 𝑛 matrix. 

1. Find n linearly independent eigenvectors for 𝐴 (if possible) say, 𝑝1, 𝑝2, . .. , 𝑝𝑛. If 𝑛 linearly independent eigenvectors do 

not exist, then 𝐴 is not diagonalizable. 

2. From the matrix P having  𝒑𝟏, 𝒑𝟐, . .. , 𝒑𝒏 as its column vectors.  

3. The matrix 𝐷 = 𝑃−1𝐴𝑃 will be diagonal with 𝜆𝑖 as its successive diagonal entries, where 𝜆𝑖 is the eigenvalue corresponding to 𝒑𝒊. 

Note that the order of the eigenvectors used to form 𝑃 will determine the order in which the eigenvalues appear on the main 

diagonal of 𝐷. 

Example 3.1.1 

Apply the results of the preceding discussion to the matrix 

 𝐴 = [
2 1 1
0 1 1
0 0 2

] or explain why they fail to apply. 

Solution  

We know that the eigenvalues of a triangular matrix are the elements in the main diagonal. That is, 

 𝜆1 = 1 and  𝜆2 = 𝜆3 = 2 are the eigenvalues of 𝐴. 

Let’s now find the corresponding eigenvectors of 𝐴. 

For 𝜆1 = 1, apply Gauss–Jordan elimination to the matrix (1𝐼 − 𝐴). 

(𝐼 − 𝐴)𝑿 = [
1 − 2 −1 −1

0 1 − 1 −1
0 0 1 − 2

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0

] 

 

                                                              ⟹ [
−1 −1 −1
0 0  −1
0 0 −1

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0

] 

⟹ [
1 1 0
0 0 1
0 0 0

] [

𝑥1

𝑥2

𝑥3

] = [
0
0
0

] 

which gives a general eigenvector of the form 

[

𝑥1

𝑥2

𝑥3

] = 𝑡 [
−1
1
0

] 

Hence, the eigenspace corresponding to 𝜆1 = 1 has basis {(−1, 1, 0)}. 

Similarly, the eigenspace corresponding to 𝜆2 = 2 has basis {(1, 0, 0)}. 

All we could come up with here is two eigenvectors. As a matter of fact, they are linearly independent since one is not a 

multiple of the other. But, they aren’t enough and there is no way to find a third eigenvector, since we have found them all. 

Therefore, we have no hope of diagonalizing this matrix. The problem is that 𝐴 is defective, since the algebraic multiplicity of 

λ2 = 2 exceeds the geometric multiplicity of this eigenvalue. 

So, it would be very handy to have some working criterion for when we can manufacture linearly independent sets of 

eigenvectors. The next theorem gives us such a criterion. 

Theorem 3.1.3 

Let 𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒌 be a set of eigenvectors of the matrix A such that corresponding eigenvalues are all distinct. Then, the set of 

vectors {𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒌} is linearly independent. 

Proof 

Suppose the set is linearly dependent. Discard redundant vectors until we have a smallest linearly dependent subset such as 

𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒎 with 𝑣𝑖 belonging to 𝜆𝑖. All the vectors have nonzero coefficients in a linear combination that sums to zero, for 

we could discard the ones that have zero coefficient in the linear combination and still have a linearly dependent set. So there 

is some linear combination of the form 

𝑐1𝒗𝟏 + 𝑐2𝒗𝟐+ . . . +𝑐𝑚𝒗𝒎 = 𝟎                             (1) 
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with each 𝑐𝑗 ≠ 0 and 𝑣𝑗 belonging to the eigenvalue 𝜆𝑗.  

Multiply equation 1 by 𝜆1 to obtain the equation 

𝑐1𝜆1𝒗𝟏 + 𝑐2𝜆1𝒗𝟐+ . . . +𝑐𝑚𝜆1𝒗𝒎 = 𝟎                   (2) 

Next, multiply equation 1 on the left by 𝐴 to obtain 

0 = 𝐴(𝑐1𝒗𝟏 + 𝑐2𝒗𝟐+ . . . +𝑐𝑚𝒗𝒎) = 𝑐1𝐴𝒗𝟏 + 𝑐2𝐴𝒗𝟐+ . . . +𝑐𝑚𝐴𝒗𝒎 

That is, 

𝑐1𝜆1𝒗𝟏 + 𝑐2𝜆2𝒗𝟐+ . . . +𝑐𝑘𝜆𝑚𝒗𝒎 = 𝟎                    (3) 

Now subtract equation 3 from equation 2 to obtain 

0𝒗𝟏 + 𝑐2(𝜆1 − 𝜆2)𝒗𝟐+ . . . +𝑐𝑘(𝜆1 − 𝜆𝑚)𝒗𝒎 = 𝟎 

This is a new nontrivial linear combination (since 𝑐2(𝜆1 − 𝜆2) ≠ 0) of fewer terms, that contradicts our choice of 

𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒌. It follows that the original set of vectors must be linearly independent.  ∎ 

Here is an application of the Theorem that is useful for many problems. 

Corollary3.1.1 

If the 𝑛 × 𝑛 matrix 𝐴 has 𝑛 distinct eigenvalues, then 𝐴 is diagonalizable. 

Proof 

We can always find one nonzero eigenvector 𝑣𝑖 for each eigenvalue 𝜆𝑖 of 𝐴. By the preceding theorem, the set 𝒗𝟏, 𝒗𝟐, . .. , 𝒗𝒏 

is linearly independent.  

Thus 𝐴 is diagonalizable by the diagonalization theorem.  ∎ 

Note that just because the 𝑛 × 𝑛 matrix 𝐴 has fewer than n distinct eigenvalues, you may not conclude that it is not 

diagonalizable. 

A simple example is the identity matrix, which is certainly diagonalizable (it’s already diagonal) but has only 1 as an 

eigenvalue. 

3.2. Symmetric Matrices and Diagonalization 

For most matrices, you must go through much of the diagonalization process before determining whether diagonalization is 

possible. One exception is with a triangular matrix that has distinct entries on the main diagonal. Such a matrix can be 

recognized as diagonalizable by inspection. In this section, we will study another type of matrix that is guaranteed to be 

diagonalizable: a symmetric matrix. 

Theorem 3.2.1 

If 𝐴 is an 𝑛 × 𝑛 symmetric matrix, then the following properties are true. 

1. 𝐴 is diagonalizable. 

2. All eigenvalues of 𝐴 are real. 

3. If 𝜆 is an eigenvalue of 𝐴 with algebraic multiplicity 𝑘, then 𝜆 has 𝑘 linearly independent eigenvectors. That is, the 

eigenspace of 𝜆 has dimension 𝑘. 

 

4. SOLVING SYSTEMS OF FIRST ORDER DIFFERENTIAL EQUATIONS 

Consider a system of ordinary first order differential equations of the form 

𝑥1
′ = 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 

𝑥2
′ = 𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 

⋮                    ⋮ 
𝑥𝑛

′ = 𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + ⋯ + 𝑎𝑛𝑛𝑥𝑛 

Where, 𝑎𝑖𝑗 ∈ ℝ. 

Now, we shall use eigenvalues and eigenvectors to obtain the solution of this system. 

✓ Our first step will be to rewrite the system in the matrix form 𝑿′ = 𝐴𝑿 where 𝐴 is the 𝑛 × 𝑛 coefficient matrix of 

constants, 𝑿 is the 𝑛 × 1 column vector of unknown functions and 𝑿′ is the 𝑛 × 1 column vector containing the 

derivatives of the unknowns. 

✓ The main step will be to use the diagonalizing matrix of 𝐴 to diagonalise the system. This process will transform 𝑿′ = 𝐴𝑿 

into the form 𝒀′ = 𝐷𝒀, where 𝐷 is a diagonal matrix.  

✓ Finally, we shall find that this new diagonal system of differential equations can be easily solved. This special solution 

will allow us to obtain the solution of the original system. 

Note that in each case, the basic unknowns are each a function of the time variable 𝑡. 

Example 4.1 

Compute the solutions of the pair of first order differential equations 
    𝑥′ =  −4𝑥

𝑦′ = 6𝑦
 

given the initial conditions 𝑥(0) = 3 and 𝑦(0) = 2. 

Solution 

Although we have two differential equations to solve, they are really quite separate. Thus, we need no knowledge of matrix 

theory to solve them. 

However, the two differential equations can be written in matrix form as follows. 

[
𝑥′

𝑦′
] = [

−4 0
0 6

] [
𝑥
𝑦] 

That is 𝑿′ = 𝐴𝑿, where  𝑋′ = [
𝑥′

𝑦′
], 𝐴 = [

−4 0
0 6

] and 𝑋 = [
𝑥
𝑦] 
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Now, recall that the general solution of the differential equation 
𝑑𝑦

𝑑𝑡
= 𝐶𝑦 is 𝑦 =  𝑦0𝑒𝐶𝑡, where 𝐶 is any constant. 

Hence, the solutions of the system are  𝑥 = 3𝑒−4𝑡 and 𝑦 = 2𝑒6𝑡. 

Example 4.2 

Find the solution of the differential equations 

         𝑥′ = 2𝑥 − 2𝑦 + 4𝑧 

𝑦′ = 3𝑦 − 2𝑧 

𝑧′ = −𝑦 + 2𝑧 

with the initial conditions 𝑥(0) = 2, 𝑦(0) = 0 and 𝑧(0) = 2. 
Solution  

As we see, the system of equations here is more difficult to deal with than that of in the first Example. So, we can use our 

knowledge of diagonalization. 

Now, set 𝑿 = [
𝑥
𝑦
𝑧

], 𝐴 = [
2     − 2      4
0       3     − 2
0     − 1       2

] and  𝑿′ = [
𝑥′
𝑦′

𝑧′

] 

It easy to check that the characteristic polynomial of the coefficient matrix 𝐴 is 

𝑝(𝜆) = 𝑑𝑒𝑡(𝜆𝐼 − 𝐴) = (𝜆 − 2)(𝜆 − 1)(𝜆 − 4) 

Hence, 𝜆1 = 2, 𝜆2 = 1 and 𝜆3 = 4 are the eigenvalues of 𝐴 corresponding to the eigenvectors 

                              𝒗𝟏 = [
1
0
0

], 𝒗𝟐 = [
−2
1
1

] and 𝒗𝟑 = [
4

−2
1

] 

respectively. 

Since the eigenvalue of the coefficient matrix 𝐴 are distinct, the corresponding eigenvectors are linearly independent. This 

shows that 𝐴 is diagonalizable and hence, 𝑃 = [𝒗𝟏, 𝒗𝟐 , 𝒗𝟑] is the diagonalizing matrix. So, we have 𝑃−1𝐴𝑃 = 𝐷, that is, 

𝑃−1𝐴𝑃 = 𝐷 = [

𝜆1     0      0
0     𝜆2      0
0     0      𝜆3

] = [
2     0      0
0     1      0
0     0      4

] 

We now introduce a new column vector of unknowns 

𝒀 = [

𝑟(𝑡)
𝑠(𝑡)

𝑞(𝑡)
] 

through the relation 𝑿 = 𝑃𝒀. Then, since P is a matrix of constants, we also have 

𝑿′ = 𝑃 𝒀′. So,  𝑿′ = 𝐴𝑿 becomes 𝑃𝒀′ = 𝐴𝑿 = 𝐴(𝑃𝒀 ) so that 𝒀′ = (𝑃−1𝐴𝑃)𝒀. That is, 

[

𝑟′(𝑡)

𝑠′(𝑡)

𝑞′(𝑡)

] = [

𝜆1     0      0
0     𝜆2      0
0     0      𝜆3

] [

𝑟(𝑡)
𝑠(𝑡)

𝑞(𝑡)
] = [

𝜆1𝑟(𝑡)
𝜆2𝑠(𝑡)

𝜆3𝑞(𝑡)
] = [

2𝑟(𝑡)
𝑠(𝑡)

4𝑞(𝑡)
] 

Now, the new system can be written as 

𝑟′(𝑡) = 𝜆1𝑟(𝑡) = 2𝑟(𝑡) 

𝑠′(𝑡) = 𝜆2𝑟(𝑡) = 𝑠(𝑡) 

𝑞′(𝑡) = 𝜆3𝑟(𝑡) = 4𝑞(𝑡) 

These equations are separate. So, the solution of this system is then given by 

𝑟(𝑡)  =  𝐶1𝑒𝜆1𝑡, 𝑠(𝑡) = 𝐶2𝑒𝜆2𝑡 and 𝑞(𝑡) = 𝐶3𝑒𝜆3𝑡.  

This means, 

𝑟(𝑡)  =  𝐶1𝑒2𝑡, 𝑠(𝑡) = 𝐶2𝑒𝑡 and 𝑞(𝑡) = 𝐶3𝑒4𝑡, where 𝐶1, 𝐶2 and 𝐶3 are any constants. 

Once 𝑟, 𝑠 and 𝑞 are known, the original unknowns 𝑥, 𝑦 and 𝑧 can be found from the relation 𝑋 = 𝑃𝑌. 

So, [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
] = [

1  − 2      4
0      1  − 2
0     1        1

] [

𝑟(𝑡)

𝑠(𝑡)

𝑞(𝑡)
] ⟹ [

𝑥(𝑡)

𝑦(𝑡)

𝑧(𝑡)
] = [

1  − 2      4
0      1  − 2
0     1        1

] [

𝐶1𝑒2𝑡

𝐶2𝑒𝑡

𝐶3𝑒4𝑡

] 

⟹ [

𝑥(𝑡)
𝑦(𝑡)

𝑧(𝑡)
] = [

𝐶1𝑒2𝑡 − 2𝐶2𝑒𝑡 + 𝐶3𝑒4𝑡

𝐶2𝑒𝑡 − 2𝐶3𝑒4𝑡

𝐶2𝑒𝑡 + 𝐶3𝑒4𝑡

] 

 

Therefore, the general solution of the system is given by 

                             𝑥(𝑡) = 𝐶1𝑒2𝑡 − 2𝐶2𝑒𝑡 + 𝐶3𝑒4𝑡 

                             𝑦(𝑡) = 𝐶2𝑒𝑡 − 2𝐶3𝑒4𝑡 

                            𝑧(𝑥) = 𝐶2𝑒𝑡 + 𝐶3𝑒4𝑡 

 

Now, with the initial conditions 𝑥(0) = 𝑧(0) = 2, and 𝑦(0) = 0, we get the system 

 

                                     𝐶1 − 2𝐶2 + 𝐶3 = 2 

                                             𝐶2 − 2𝐶3 = 0 

                                             𝐶2 + 𝐶3 = 2 
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Solving this, we obtain 𝐶1 = 4, 𝐶2 =
4

3
 and 𝐶3 =

2

3
. 

 

Thus, the particular solution of the system will be 

𝑥(𝑡) = 4𝑒2𝑡 −
8

3
𝐶2𝑒𝑡 +

2

3
𝑒4𝑡 

                                                𝑦(𝑡) =
4

3
𝑒𝑡 −

4

3
𝐶3𝑒4𝑡 

                                                𝑧(𝑥) =
4

3
𝑒𝑡 +

2

3
𝑒4𝑡 

 

 

 

5. CONCLUSION  

The method introduced in this study is applicable for any systems of first order differential equations containing 𝑛 unknowns. 

This approach can be extended to systems of second order differential equations. The only restriction is that the eigenvalues of 

the coefficient matrix 𝐴 in the system 𝑿′ = 𝐴𝑿 should be distinct. 
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