
© IJEDR 2018 | Volume 6, Issue 3 | ISSN: 2321-9939 

 

IJEDR1803008 International Journal of Engineering Development and Research (www.ijedr.org) 40 

 

Flexural Vibrations of Thermoporoelastic Solids in 

the Presence of Initial Stress with Two Relaxation 

Times 

Manjula Ramagiri  

University Arts and Science College (Automonous) 

Department of Mathematics, Kakatiya University, India 

_____________________________________________________________________________________________________ 

 

Abstract - This paper deals with flexural vibrations of thermoporoelastic plates in the presence of initial stress with two 

relaxation times are investigated in the framework of Biot’s theory. Pertinent constitutive relations and equations of 

motion are derived. Frequency equation is obtained in the presence of dissipation. In particular case, frequency equation 

is obtained in the absence of dissipation. Frequency and attenuation is computed as a function of wavenumber and initial 

stress. Numerical results are presented graphically. 
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 1. Introduction 

The wave propagation in thermoporoelastic media in the presence of initial stress is of much importance in various fields such 

as earthquake Engineering, Soil dynamics and Geophysics. Hany H. Sherief and Heba A. Saleh [1] investigated a problem on 

thermoelasticity with two relaxation times for an infinite thermoelastic layer. On the flexural and extensional thermoelastic 

waves in orthotropic plates with two thermal relaxation times is studied by Verma and Noriohasbe [2]. On the extensional and 

flexural generalized thermoelastic waves in an anistropic plate is investigated by Abd-alla et al [3]. Nilratan Chakraborty [4] 

investigated reflection of plane waves at a free surface under initial stress and temperature field. Employing the Biot’s theory 

[5], On flexural vibrations of poroelastic circular cylindrical shells immersed in acoustic medium is investigated by Shah and 

Tajuddin [6]. Theodorakopoulos and Beskos [7] studied flexural vibrations of poroelastic plates. Flexural vibrations of 

poroelastic solids in the presence of static stresses is investigated by Rajitha et al [8]. Flexural vibrations of poroelastic solid 

cylinder in the presence of static stresses is investigated studied by Manjula et al [9]. To the best of author knowledge, flexural 

vibrations in thermoporoelastic solids in the presence of initial stress with two relaxation times is not yet studied. Therefore, in 

the present paper same is investigated in the frame work of Biot’s theory. The pertinent equations of motion are derived. 

Frequency is computed as a function of initial stress and wave number. 

The rest of the paper is organized as follows. In section 2, governing equations and solution of the problem are discussed. In 

section 3, numerical results are given. Finally, concluding remarks are given in section 4. 

2. Solution of the problem 

Consider the thermoporoelastic solid in Cartesian coordinate system [10] and heat conduction [11] are as follows 
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In eq. (1), 
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mass density, P is the initial stress, vc  is the specific heat capacity, K  is the thermal conductivity,  0T  is the reference 

temperature, 0  is the relaxation time,  221211 ,,   are the mass coefficients, ),,( wvu  and ),,( WVU  are the 

displacements of solid and fluid.  s  is the fluid pressure, ij  are the stress components are given by [4, 11] 

,)()(2 1 ijijijij
t

T
TQAeNe 




+−++=  

.RQes +=  

                                                                                                                                                   (2) 

In eq. (2), ije ’s are strain components, RQNA ,,,  are poroelastic constants and                                                                                                     

)2( NAD += ,   is the thermal stress,  1  is the relaxation time, T  is the temperature, e and  are dilatations of solid and 

fluid.  Substitution of eq. (2) in eq. (1) the equations of motion are as follows 
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  Now we can assume the solution to the eq. (3) in the following form [8] 
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In all the above 7654321 ,,,,,, CCCCCCC

 
are arbitrary constants, j  is the complex unity and )3,2,1( =iki is the 

wavenumber in the  
thi  direction such that the wavenumber 
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3. Numerical results 

For the numerical work, the wave propagation is considered along −z direction. In this case 021 == kk and eq. (5) reduces 

to the following matrix form. 
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Due to the presence of dissipation )(b  nature of the medium, waves are attenuated. For a non-trivial solution, the determinant 

of coefficient matrix is zero. Accordingly we obtain the complex valued frequency equation. 
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Where 3,2,1,, =+= jidibA ijijij
 and the expression for the ijb and ijd  are given below 
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a. Particular case  

In the absence of dissipation coefficient ),0( =b  we obtain the frequency equation in the following form 
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                                                                                                                                                      (8)    

Where 
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In the above, 

,00



j

−=  .1 11  j+=  The frequency equation (7) and (8) is investigated for particular solids namely sandstone 

saturated with kerosene while material-2 is sandstone saturated with water. The values are taken [13, 14, 15] 
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The complex frequency (7) gives frequency and attenuation coefficient as a function of wavenumber. The real part of eq. (7) 

gives frequency of wave, whereas
1−Q = (2imaginary part of eq. (7)) / (real part of eq. (7)) gives attenuation coefficient. 

Substituting the values of eqs. (9), (10) in the frequency equations (7) and (8) frequency, attenuation coefficient are computed 

as a function of wavenumber and initial stress. Frequency and attenuation are computed using the bisection method implemented 

in MATLAB, and results are depicted in figures 1-3 graphically. Figure-1 shows the plot of frequency against wavenumber at 

initial stress (IS=1) and dissipation (b=1). From the figure it is observed that frequency of material-2 values is greater than that 

of material-1. It is also observed that as the wavenumber increases frequency increases for both materials. Figure-2 shows the 

plot of attenuation against wavenumber at initial stress (IS=1) and dissipation (b=1). From the figure it is clear that material-1 

values are greater than that of material-2, this inconsistency due to the presence of initial stress and fluid present in the materials. 

Figure-3 shows the plot of frequency against wavenumber at initial stress (IS=1). From the figure it is clear that frequency of 

material-2 is greater than that of material-1. It is also clear that as the wavenumber increases frequency increases for both 

materials.  

                                            

 
Figure-1 Variation of frequency with wavenumber at dissipation (b=1) 
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Figure-2 Variation of attenuation with wavenumber at dissipation (b=1) 

 

Figure-3 Variation of frequency with wavenumber 

4. Conclusion 

Employing Biot’s theory, flexural vibrations of thermoporoelastic solids in the presence initial stress with two relaxation times. 

Pertinent constitutive relations and equations of motion are derived. Frequency and attenuation is computed for two poroelastic 

solids. The complex valued frequency equation is reduced to real valued equations which gives that frequency and attenuation. 

Attenuation values are greater than that of frequency. In the absence of dissipation as the wavenumber increases frequency 

increases for two materials.  
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