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. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [9] and later Atanassov [1] generalized this idea to intuitionistic fuzzy
sets using the notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy topological spaces using the
notion of intuitionistic fuzzy sets. Sarsak and Rajesh[7] introduced m-generalized semi-Preclosed sets. In this paper we introduce
intuitionistic fuzzy am-generalized closed sets and study some of their properties.

Il. PRELIMINARIES
in X' is an object having the form
A={(x, 1a (), va(0) ) I x € X }
where the functions pa(x): X — [0, 1] and va(X): X — [0, 1] denote the degree of membership (namely pa(x)) and the degree
of non-membership (namely va(X)) of each element x € X to the set A, respectively, and 0 < pa(x) + va(x) < 1 for each x € X.
We denote the set of all intuitionistic fuzzy sets in X, by IFS (X).

Definition 2.2: [1] Let A and B be IFSs of the form
Ah= {{x, pax), va(X) ) /x e X}and B = {({x, pa(x), va(X) ) / x € X }.
Then
(@) A cBifand only if pa(x) < pe (x) and va(x) > ve(x) forall x e X
(b) A=Bifandonlyif AcBandBc A
() A°={({x, vax), pa(X) )/ x e X}
(d) AnB={{x, pa(X) A ue(x), va(X) vve(X) )/ x € X}
) AuB={{x, pa(X) Vv usXx),vaX) Ave(X)) I x e X}

For the sake of simplicity, we shall use the notation A = { x, pa, va) instead of A={{x, pax), va(x) )/ x € X}. Also
for the sake of simplicity, we shall use the notation A = ( x, (1a pg ), (vVa, ve) ) instead of A = ( x, (A/ua, B/ug), (A/va, B/vg) ).

The intuitionistic fuzzy sets 0- = {(x,0,1)/x e X}and 1-={(x,1,0)/x € X} are respectively the empty set and the
whole set of X.

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family t of IFSs in X satisfying the following axioms.
(i) 0,1l-erx
(i) GinGze 1, forany Gi, Gaet
(iif) U Gj e 7 for any family { Gi/ ieJ}c T
In this case the pair (X, 1) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in t is known as an
intuitionistic fuzzy open set (IFOS in short) in X.

The complement A° of an IFOS A in an IFTS (X, 7) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [2] Let (X, t) be an IFTS and A = { X, pa, va ) be an IFS in X. Then the intuitionistic fuzzy interior and an
intuitionistic fuzzy closure are defined by

int(A)= u{G/GisanIFOSinXandGc A},

cl(A) =n{K/KisanIFCSinXand Ac K}
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Note that for any IFS A in (X, 1), we have cl(A°) = (int(A))¢ and int(A°) = (cl(A))".

Definition 2.5:[7] A subset of A of a space (X, 1) is called:
(i) regular open if A =int (cl(A)).
(if) 7 open if A is the union of regular open sets.

Definition 2.6:[4] An IFS A = ( x, pa, va ) in an IFTS (X, 7) is said to be an intuitionistic fuzzy semi closed set (IFSCS in short)
if int(cl(A)) c A

Definition 2.7:[4] An IFS A = { X, pa, va ) in an IFTS (X, 1) is said to be an intuitionistic fuzzy semi open set (IFSOS in short)
if A  cl(int(A)).

Definition 2.8:[4] An IFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) < A,
(i) intuitionistic fuzzy pre open set (IFPOS in short) if A < int(cl(A)).

Definition 2.9:[4] AnIFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy a-open set (IFaOS in short) if Ac int(cl(int(A))),
(ii) intuitionistic fuzzy a-closed set (IFa.CS in short) if cl(int(cl(A)) < A.

Definition 2.10:[5] AnIFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy y-open set (IFyOS in short) if A c int(cl(A)) U cl(int(A)),
(i) intuitionistic fuzzy y-closed set (IFyCS in short) if cl(int(A)) n int(cl(A)) c A.

Definition 2.11:[4] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy semi pre open set (IFSPOS in short) if there exists an
IFPOS B such that B < A < cl(B).

Definition 2.12:[4] AnIFS A of an IFTS (X, 7) is an intuitionistic fuzzy semi pre closed set (IFSPCS in short) if there exists an
IFPCS B such that int(B) < A < B.

The family of all IFSPCSs (respectively IFSPOSs) of an IFTS (X, 1) is denoted by IFSPC(X) (respectively IFSPO(X)).
Definition 2.13:[7] AnIFS A of an IFTS (X, 1) is an

(i) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),

(i) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)).

Definition 2.14:[7] An IFS A of an IFTS (X, 1) is an intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A) < U
whenever A c U and U is an IFOS in X.

Definition 2.15:[6] Let an IFS A of an IFTS (X, 7). Then the semi closure of A (scl(A) in short) is defined as scl (A) = n{ K/
Kisan IFSCSin Xand Ac K }.

Definition 2.16:[6] Let A be an IFS of an IFTS (X, t). Then the semi interior of A (sint(A) in short) is defined as sint(A) =
W{ K/Kisan IFSOS in X and K < A}.

Definition 2.17:[8] An IFS A of an IFTS (X, 7) is an intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if scl(A)
< U whenever Ac U and U is an IFOS in X.

Result 2.18 : [8] Let (X, t) be an IFS. If A is an IFS of X then scl(A°) = (sint(A))°
Result 2.19: Let A be an IFS in (X, 1), then

(i) scl(A) = AU int(cl(A)),
(ii) sint(A) = A ~ cl(int(A)).

I11. Intuitionistic fuzzy o 7 g closed sets
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In this section, we have introduced intuitionistic fuzzy alpha 7z generalized closed sets and studied some of their properties.

Definition 3.1: An IFS A in (X, 1) is said to be an intuitionistic fuzzy alpha 7 generalized closed set (IFa. 7z GCS in short) if
acl(A) < U whenever Ac Uand U isan IF 7z OS in (X, 1). Here The family of all IFa 7z GCS of an IFTS (X, 1) is denoted by
IFa 7z GC(X).

Example 3.2: Let X={a,b } and let t= { 0-, G, 1-} be an IFT on X, where G =( X, (0.7, 0.6), (0.2, 0.3) ). Here uc(a)=0.8,
ue(b)=0.7, ve(a)= 0.2 and ve(b)= 0.3. Let us consider the IFS A = ( x, (0.2, 0.2), (0.7, 0.6) ). Clearly if A< 1-,then acl(A)
< 1.. Now let us consider the IFOS G in (X, 1). Clearly A < G. Now acl(A) = A < G . Hence acl(A) < U whenever Ac U
and U isan IF 77 OS in (X, 7). Therefore, the IFS A is an IFa 7 GCS in (X, 1).

Theorem 3.3: Every IFCS in (X, 1) is an IFa 77 GCS (X, 1) but not conversely.
Proof: Assume that A is an IFCS in (X, 7). Let us consider an IFS A < U and U be an IF 77 OS in (X, 7). Since acl(A) < cl(A)
and Aisan IFCS in X, acl(A) c cl(A) = A c U. That is acl(A) < U. Therefore, Ais an IFa 7 GCS in X.

Example 3.4: Let X ={a,b } and let t = { 0-, G, 1-} where G = ( x, (0.4, 0.2), (0.5, 0.6) ). Consider the IFS A = ( x, (0.5,
0.3), (0.5, 0.6) ). Clearly A c 1- and acl(A) =(Xx, (0.5, 0.6), (0.4,0.2) ) < 1-. Hence A'is an IFo. 7 GCS. But A is not an IFCS
in X.

Theorem 3.5: Every IFaCS in (X, 1) is an IFa. 77 GCS in (X, 1) but not conversely.

Proof: Let us consider an IFS A ¢ U and U be an IFOS in (X, 7). Also let A is an IFaCS in X. This implies acl(A) = A. Hence
acl(A) < U. Therefore Aisan IFa 7z GCS in X.

Example 3.6: Let X={a,b } and let t= { 0-, Gy, G, 1-}, where G1 = (X, (0.3, 0.2), (0.6, 0.7) ), G2 =( X, (0.8, 0.8), (0.2, 0.2)
). Then the IFS A = (%, (0.4, 0.4), (0.5,0.6) ) isan IFa 7z GCS in X. But A is not an IFaCS in X because cl(int(cl(A))) = (X,
(0.6,0.7), (0.3,0.2) ) £ A.

Theorem 3.7: Every IFRCS in (X, 1) is an [Fa 7z GCS in (X, 1) but not conversely.

Proof: Let A be an IFRCS in (X, 7). Since every IFRCS is an IFCS, A is an IFCS in X. Hence by Theorem 3.3, A is an [Fa.
7T GCSin X.

Example 3.8: Let X={a,b } and lett= { 0-, G, 1-} be an IFT on X, where G =(x, (0.5, 0.6), (0.2, 0.3) ). Then the IFS A =
(x,(0.2,0.2), (0.8,0.7) yisan IFa 7 GCSin X but not an IFRCS in X.

Theorem 3.9: Every IFGCS in (X, 1) is an IFa 7z GCS in (X, 1) but its converse may not be true in general.

Proof: Assume that A be an IFGCS in (X, 7). Let A= U and U be an IF 7z OS in X. By hypothesis cl(A) < U. Clearly acl(A) c
cl(A). This implies acl(A) < U whenever A< U and U is an IF 7 OS in X. Hence A isan IFa. 7z GCS in X.

Example 3.10: Let X = {a,b } and let Tt = { 0-, G, 1- } be an IFT on X, where G=(x,(0.2,0.8),(0.3,0.1) ).
Then the IFS A = (%, (0.1, 0), (0.4, 0.8) ) isan IFa 7z GCS but A is not an IFGCS in X, as cl(A) € G even though A < G and
GisanIF 7 OSin X.

Theorem 3.11: Every IFa. 77 GCS in (X, 1) is an IFGSCS in (X, 1) but its converse may not be true in general.

Proof: Assume that A is an IFa 77 GCS in (X, t). Let an IFS A < U and U be an IF 7 OS in (X, 7). By hypothesis acl(A) c U.
That is A U cl(int(cl(A))) < U. This implies Au int(cl(A)) < U. Therefore scl(A) = A U int(cl(A))) < U. Hence A is an IFGSCS
in X.

Example 3.12: Let X ={ a,b } and let t = { 0-, G, 1- } be an IFT on X, where G =(x,(0.2,0.3), (0.4, 0.5) ).

Then the IFS A = (X, (0.1, 0), (0.4, 0.5) ) isan IFGSCS in X but A is not an IFa. 7 GCS in X, since acl(A) € G even though A
cGandGisan IF7 OS in (X, 7).

Remark 3.13: An IFGSPCS in (X, 1) is need not be an [Fa 77 GCS in (X, 1)
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Example 3.14: Let X ={a,b}and G = (X, (0, 0.8), (0.5, 0.1) ) and let T= { 0-, G, 1-} be an IFT on X. Then the IFS A = (X,
(0,0.3), (0.7,0.7) y isan IFGSPCS but A is not an IFa. 7 GCS in X since acl(A) € G even though A < G and G is an IF 7 OS
in (X, 1).

Remark 3.15: An IFP closedness is independent of an IFo. 7z G closedness.

Example 3.16: Let X ={a,b }and G =(x, (0, 0.9), (0.5,0.1) Yand let t= {0-, G, 1-} bean IFT on X. Then the IFS A=
X, (0, 0.3), (0.6, 0.6) ) is an IFPCS but not an IFa. 7 GCS in X, as acl(A) € G even though Ac Gand Gisan IF 7z OS in X.

Example 3.17: Let X ={a, b }and G =(x, (0.3,0.3), (0.6, 0.7) ) and let T={ 0-, G, 1-} be an IFT on X. Then the IFS A =¢
X, (0.4, 0.3), (0.5, 0.6) ) isan IFo 7x GCS but not an IFPCS in X, as cl(int(A)) € A.

Remark 3.18: An IFSP closedness is independent of an IFaG closedness.

Example 3.19: Let X ={a, b }and G =(x, (0.1,0.9), (0.6,0.1) yand let = {0-, G, 1-} bean IFT on X. Consider an IFS A
=(Xx, (0, 0.4), (0.6, 0.6) ) in X. Since acl(A) € G even though A G and G isan IFOS in X, Ais notan IFa. 7 GCS in X. But
A is an IFSPCS in (X, 7).

Example 3.20: Let X ={a,b}and G =(x, (0.6, 0.7), (0.3,0.2) yand let t={0-, G, 1-} beanIFT on X. Thenthe IFS A=
X, (0.7,0.8), (0.1,0.2) ) isan IFa 7z GCS but not an IFSPCS in X since int(cl(int(A))) = 1- £ A.

Remark 3.21: An IFa 77 G closedness is independent of IFy closedness.

Example 3.22: Let X ={a, b }and G =(x, (0.4, 0.6), (0.2,0.2) ) and let t= {0-, G, 1-} be an IFT on X. Then the IFS A = (X,
(0.4,0.3), (0.6,0.2) ) isan IFyCS but not an IFa. 77 GCS in X, as acl(A) € G even though Ac Gand Gisan IF7Z OSin X.

Example 3.23: Let X ={a,b } and G =(x, (0.5, 0.1), (0.5, 0.9) ) and let ©= {0-, G, 1-} be an IFT on X. Then the IFS A =
X, (0.7,0.8), (0.2,0.1) ) isan IFax GCS but not an IFyCS in X, as cl(int(A)) n int(cl(A)) € A.

Remark 3.24: The intersection of any two IFa 7z GCS is not an IFa 7 GCS in general as seen from the following example.

Example 3.25: Let X ={a,b}and G =(x, (0.5,0), (0.1, 1) yand let t= {0-, G, 1-} beanIFT on X. Then the IFS A = (X,
(0.2,1), (0.7,0) ), B={x, (0.5,0), (0.3, 1) ) are IFa. 7z GCS. Now AN B =(x, (0.2,0), (0.7, 1) ). Since acl(A N B) € G even
thoughANBc GandGisanIFZ70Sin X, AnBisnotan IFa 7z GCS in X.

Theorem 3.26: Let (X, 1) be an IFTS. Then for every A € IFa 7 GC(X) and for every B € IFS(X), A < B < acl(A) implies
B € IFa 7 GC(X).

Proof: Letan IFSB < U and U be an IFOS in X. Since Ac B, Ac Uand Ais an IFaz GCS, acl(A) < U. By hypothesis B
c acl(A), acl(B) < acl(A) < U. Therefore acl(B) < U. Hence B is an IFa. 7 GCS of X.

Theorem 3.27: If Alisan IFOS in (X, 1) and an IFa 77 GCS in (X, 1), then A is an IFaCS in X.
Proof: Let A be an IFOS in X. Since A — A, by hypothesis acl(A) c A. But A c acl(A). Therefore acl(A) =
A. Hence Ais an IFaCS of X.

Theorem 3.28: The union of IFa. 7 GCS A and B is an IFa. 7 GCS in (X, 1), if A and B are IFCS in (X, 1).

Proof: Since A and B are IFCS in X, cl(A) = A and cl(B) = B. Assume that Aand B are IFa 77 GCS in (X, 1). Let
AUB c U and U be IF 7z OS in X. Then cl(int(cl(AUB))) = cl(int(AUB)) < cl(AuB) = AUB c U. That is acl(AUB) c U.
Therefore the union of A and B is an IFa 7 GCS in (X, 7).

Theorem 3.29: Let (X, 1) be an IFTS and A be an IFS in X. Then A is an IFa 7z GCS if and only if A g F implies acl(A) g F
for every IFCS F of X.

Proof: Necessity: Let Fbean IFCSinXandlet AgF. Then A c F¢ where F® isan IF 7 OS in X. Therefore acl(A) < F¢, by
hypothesis. Hence ocl(A) g F.

Sufficiency: Let F be an IFCS in X and let A be an IFS in X. Then by hypothesis, A g F implies acl(A) g F. Then acl(A) c
F¢ whenever A < F¢and F¢is an IFOS in X. Hence Aisan IFa. 77 GCS in X.
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Theorem 3.30: Let (X, t) be an IFTS. Then IFaO(X) = IFaC(X) if and only if every IFS in (X, t) is an [IFa. 7 GCS in X.

Proof: Necessity: Suppose that IFaO(X) = IFaC(X). Let Ac U and U be an IFOS in X. This implies acl(A) < acl(U). Since
Uisan IFOS, U is an IFaOS in X. Since by hypothesis U is an IFaCS in X, acl(U) = U. This implies acl(A) < U. Therefore A
is an IFa 7z GCS of X.
Sufficiency: Suppose that every IFS in (X, 1) is an IFa 7z GCS in X. Let U € IFO(X), then U € IFaO(X). Since U < U and U
is IFOS in X, by hypothesis acl(U) < U. But clearly U < acl(U). Hence U = acl(U). That is U € IFaC(X). Hence IFaO(X) <
IFaC(X).

Let A € IFaC(X) then Acis an IFaOS in X. But IFaO(X) < IFaC(X). Therefore A € IFaC(X). Hence A € IFaO(X).
This implies IFaC(X) < IFaO(X). Thus IFaO(X) = IFaC(X).

Theorem 3.31: If Alisan IFOS and an IFa. 77 GCS in (X, 1), then

(i) Aisan IFROS in X

(ii) Aisan IFRCS in X.

Proof: (i): Let A bean IF 7 OS and an IFaGCS in X. Then acl(A) < A. This implies cl(int(cl(A))) < A. That is int(cl(A))
< A. Since Aiisan IFOS, Aisan IFPOS in X. Hence A c int(cl(A)). Therefore A = int(cl(A)). Hence A is an IFROS in X.
(ii): Let A be an IFOS and an IFa 7z GCS in X. Then cl(int(cl(A))) < A. That is cl(int(A)) < A. Since A is an IFOS, A is an
IFSOS in X. Hence A c cl(int(A)). Therefore A = cl(int(A)). Hence A is an IFRCS in X.
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