α^πg- Closed sets in Intuitionistic Fuzzy Topological spaces

¹M.Venkatachalam, ²Kannan, ³K.Ramesh

 ¹Asst. Professor, Vivekananda Arts and Science College for women, Sankari.
²Asst. Professor, Kongunadu College of Engineering & Technology, Trichy.
³Professor, CMS College of Engineering & Technology, Coimbatore. Tamil Nadu, India

Abstract: This paper is devoted to the study of intuitionistic fuzzy topological spaces. In this paper intuitionistic fuzzy $\alpha \pi g$

closed sets are introduced. We study some of their basic properties.

Key words and phrases: Intuitionistic fuzzy topology, Intuitionistic fuzzy open sets, Intuitionistic fuzzy closed sets, Intuitionistic fuzzy $\alpha \pi$ - generalized closed sets.

I. INTRODUCTION

The concept of fuzzy sets was introduced by Zadeh [9] and later Atanassov [1] generalized this idea to intuitionistic fuzzy sets using the notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy topological spaces using the notion of intuitionistic fuzzy sets. Sarsak and Rajesh[7] introduced π -generalized semi-Preclosed sets. In this paper we introduce intuitionistic fuzzy $\alpha\pi$ -generalized closed sets and study some of their properties.

II. PRELIMINARIES

in X is an object having the form

= {
$$\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$$
 }

where the functions $\mu_A(x)$: $X \to [0, 1]$ and $\nu_A(x)$: $X \to [0, 1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. We denote the set of all intuitionistic fuzzy sets in X, by IFS (X).

Definition 2.2: [1] Let A and B be IFSs of the form

А

A = { $\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X$ } and B = { $\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X$ }. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle / x \in X \}$
- (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle | x \in X \}$

For the sake of simplicity, we shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$. Also for the sake of simplicity, we shall use the notation $A = \langle x, (\mu_A, \mu_B), (\nu_A, \nu_B) \rangle$ instead of $A = \langle x, (A/\mu_A, B/\mu_B), (A/\nu_A, B/\nu_B) \rangle$.

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms.

(i) $0_{\sim}, 1_{\sim} \in \tau$

(ii) $G_1 \cap G_2 \in \tau$, for any $G_1, G_2 \in \tau$

(iii) \cup G_i $\in \tau$ for any family { G_i / i \in J } $\subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A^c of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4: [2] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and an intuitionistic fuzzy closure are defined by

 $\begin{array}{l} \operatorname{int}(A) = \ \cup \ \{ \ G \ / \ G \ \text{is an IFOS in } X \ \text{and} \ G \subseteq A \ \}, \\ \operatorname{cl}(A) \ = \ \cap \ \{ \ K \ / \ K \ \text{is an IFCS in } X \ \text{and} \ A \subseteq K \ \}. \end{array}$

546

Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$.

Definition 2.5:[7] A subset of A of a space (X, τ) is called:

- (i) regular open if A = int (cl(A)).
- (ii) π open if A is the union of regular open sets.

Definition 2.6:[4] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an *intuitionistic fuzzy semi closed set* (IFSCS in short) if int(cl(A)) \subseteq A.

Definition 2.7:[4] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an *intuitionistic fuzzy semi open set* (IFSOS in short) if A \subseteq cl(int(A)).

Definition 2.8:[4] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy pre closed set (IFPCS in short) if $cl(int(A)) \subseteq A$,
- (ii) intuitionistic fuzzy pre open set (IFPOS in short) if $A \subseteq int(cl(A))$.

Definition 2.9:[4] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy α -open set (IF α OS in short) if A \subseteq int(cl(int(A))),
- (ii) intuitionistic fuzzy α -closed set (IF α CS in short) if cl(int(cl(A)) \subseteq A.

Definition 2.10:[5] An IFS A of an IFTS (X, τ) is an

- (i) intuitionistic fuzzy γ -open set (IF γ OS in short) if $A \subseteq int(cl(A)) \cup cl(int(A))$,
- (ii) intuitionistic fuzzy γ -closed set (IF γ CS in short) if cl(int(A)) \cap int(cl(A)) \subseteq A.

Definition 2.11:[4] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy semi pre open set (IFSPOS in short) if there exists an IFPOS B such that $B \subseteq A \subseteq cl(B)$.

Definition 2.12:[4] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy semi pre closed set (IFSPCS in short) if there exists an IFPCS B such that int(B) \subseteq A \subseteq B.

The family of all IFSPCSs (respectively IFSPOSs) of an IFTS (X, τ) is denoted by IFSPC(X) (respectively IFSPO(X)).

Definition 2.13:[7] An IFS A of an IFTS (X, τ) is an

(i) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),

(ii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)).

Definition 2.14:[7] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X.

Definition 2.15:[6] Let an IFS A of an IFTS (X, τ). Then the semi closure of A (scl(A) in short) is defined as scl (A) = \cap { K / K is an IFSCS in X and A \subseteq K }.

Definition 2.16:[6] Let A be an IFS of an IFTS (X, τ). Then the semi interior of A (sint(A) in short) is defined as sint(A) = $\cup \{ K \mid K \text{ is an IFSOS in } X \text{ and } K \subseteq A \}.$

Definition 2.17:[8] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if scl(A) \subseteq U whenever A \subseteq U and U is an IFOS in X.

Result 2.18 : [8] Let (X, τ) be an IFS. If A is an IFS of X then $scl(A^c) = (sint(A))^c$

Result 2.19: Let A be an IFS in (X, τ) , then (i) $scl(A) = A \cup int(cl(A))$, (ii) $sint(A) = A \cap cl(int(A))$.

III. Intuitionistic fuzzy $\alpha \pi$ g closed sets

In this section, we have introduced intuitionistic fuzzy alpha π generalized closed sets and studied some of their properties.

Definition 3.1: An IFS A in (X, τ) is said to be an intuitionistic fuzzy alpha π generalized closed set (IF $\alpha \pi$ GCS in short) if α cl(A) \subseteq U whenever A \subseteq U and U is an IF π OS in (X, τ). Here The family of all IF $\alpha \pi$ GCS of an IFTS (X, τ) is denoted by IF $\alpha \pi$ GC(X).

Example 3.2: Let $X = \{a, b\}$ and let $\tau = \{0, G, 1, \}$ be an IFT on X, where $G = \langle x, (0.7, 0.6), (0.2, 0.3) \rangle$. Here $\mu_G(a) = 0.8$, $\mu_G(b) = 0.7$, $\nu_G(a) = 0.2$ and $\nu_G(b) = 0.3$. Let us consider the IFS $A = \langle x, (0.2, 0.2), (0.7, 0.6) \rangle$. Clearly if $A \subseteq 1_{\sim}$, then $\alpha cl(A) \subseteq 1_{\sim}$. Now let us consider the IFOS G in (X, τ) . Clearly $A \subseteq G$. Now $\alpha cl(A) = A \subseteq G$. Hence $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF π OS in (X, τ) . Therefore, the IFS A is an IF $\alpha \pi$ GCS in (X, τ) .

Theorem 3.3: Every IFCS in (X, τ) is an IF $\alpha \pi$ GCS (X, τ) but not conversely.

Proof: Assume that A is an IFCS in (X, τ) . Let us consider an IFS A \subseteq U and U be an IF π OS in (X, τ) . Since $\alpha cl(A) \subseteq cl(A)$ and A is an IFCS in X, $\alpha cl(A) \subseteq cl(A) = A \subseteq U$. That is $\alpha cl(A) \subseteq U$. Therefore, A is an IF $\alpha \pi$ GCS in X.

Example 3.4: Let X = { a, b } and let $\tau = \{ 0_{\sim}, G, 1_{\sim} \}$ where G = $\langle x, (0.4, 0.2), (0.5, 0.6) \rangle$. Consider the IFS A = $\langle x, (0.5, 0.3), (0.5, 0.6) \rangle$. Clearly A $\subseteq 1_{\sim}$ and $\alpha cl(A) = \langle x, (0.5, 0.6), (0.4, 0.2) \rangle \subseteq 1_{\sim}$. Hence A is an IF $\alpha \pi$ GCS. But A is not an IFCS in X.

Theorem 3.5: Every IF α CS in (X, τ) is an IF $\alpha \pi$ GCS in (X, τ) but not conversely.

Proof: Let us consider an IFS $A \subseteq U$ and U be an IFOS in (X, τ) . Also let A is an IF α CS in X. This implies α cl(A) = A. Hence α cl(A) \subseteq U. Therefore A is an IF $\alpha \pi$ GCS in X.

Example 3.6: Let $X = \{a, b\}$ and let $\tau = \{0, G_1, G_2, 1, \}$, where $G_1 = \langle x, (0.3, 0.2), (0.6, 0.7) \rangle$, $G_2 = \langle x, (0.8, 0.8), (0.2, 0.2) \rangle$. Then the IFS $A = \langle x, (0.4, 0.4), (0.5, 0.6) \rangle$ is an IF $\alpha \pi$ GCS in X. But A is not an IF α CS in X because cl(int(cl(A))) = $\langle x, (0.6, 0.7), (0.3, 0.2) \rangle \not\subseteq A$.

Theorem 3.7: Every IFRCS in (X, τ) is an IF $\alpha \pi$ GCS in (X, τ) but not conversely.

Proof: Let A be an IFRCS in (X, τ) . Since every IFRCS is an IFCS, A is an IFCS in X. Hence by Theorem 3.3, A is an IF α π GCS in X.

Example 3.8: Let X = { a, b } and let $\tau = \{0, G, 1, \}$ be an IFT on X, where $G = \langle x, (0.5, 0.6), (0.2, 0.3) \rangle$. Then the IFS A = $\langle x, (0.2, 0.2), (0.8, 0.7) \rangle$ is an IF $\alpha \pi$ GCS in X but not an IFRCS in X.

Theorem 3.9: Every IFGCS in (X, τ) is an IF $\alpha \pi$ GCS in (X, τ) but its converse may not be true in general.

Proof: Assume that A be an IFGCS in (X, τ) . Let $A \subseteq U$ and U be an IF π OS in X. By hypothesis $cl(A) \subseteq U$. Clearly $\alpha cl(A) \subseteq cl(A)$. This implies $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is an IF π OS in X. Hence A is an IF $\alpha \pi$ GCS in X.

Example 3.10: Let $X = \{a, b\}$ and let $\tau = \{0, G, 1, \}$ be an IFT on X, where $G = \langle x, (0.2, 0.8), (0.3, 0.1) \rangle$. Then the IFS $A = \langle x, (0.1, 0), (0.4, 0.8) \rangle$ is an IF $\alpha \pi$ GCS but A is not an IFGCS in X, as cl(A) \nsubseteq G even though A \subseteq G and G is an IF π OS in X.

Theorem 3.11: Every IF $\alpha \pi$ GCS in (X, τ) is an IFGSCS in (X, τ) but its converse may not be true in general.

Proof: Assume that A is an IF $\alpha \pi$ GCS in (X, τ). Let an IFS A \subseteq U and U be an IF π OS in (X, τ). By hypothesis α cl(A) \subseteq U. That is A \cup cl(int(cl(A))) \subseteq U. This implies A \cup int(cl(A)) \subseteq U. Therefore scl(A) = A \cup int(cl(A))) \subseteq U. Hence A is an IFGSCS in X.

Example 3.12: Let $X = \{a, b\}$ and let $\tau = \{0_{\sim}, G, 1_{\sim}\}$ be an IFT on X, where $G = \langle x, (0.2, 0.3), (0.4, 0.5) \rangle$. Then the IFS $A = \langle x, (0.1, 0), (0.4, 0.5) \rangle$ is an IFGSCS in X but A is not an IF $\alpha \pi$ GCS in X, since $\alpha cl(A) \notin G$ even though A $\subseteq G$ and G is an IF π OS in (X, τ).

Remark 3.13: An IFGSPCS in (X, τ) is need not be an IF $\alpha \pi$ GCS in (X, τ)

Example 3.14: Let X = { a, b } and G = $\langle x, (0, 0.8), (0.5, 0.1) \rangle$ and let $\tau = \{ 0, G, 1, \}$ be an IFT on X. Then the IFS A = $\langle x, (0, 0.3), (0.7, 0.7) \rangle$ is an IFGSPCS but A is not an IF $\alpha \pi$ GCS in X since $\alpha cl(A) \notin G$ even though A \subseteq G and G is an IF π OS in (X, τ).

Remark 3.15: An IFP closedness is independent of an IF $\alpha \pi$ G closedness.

Example 3.16: Let X = { a, b } and G = $\langle x, (0, 0.9), (0.5, 0.1) \rangle$ and let $\tau = \{ 0_{\sim}, G, 1_{\sim} \}$ be an IFT on X. Then the IFS A = $\langle x, (0, 0.3), (0.6, 0.6) \rangle$ is an IFPCS but not an IF $\alpha \pi$ GCS in X, as $\alpha cl(A) \not\subseteq G$ even though A $\subseteq G$ and G is an IF π OS in X.

Example 3.17: Let X = { a, b } and G = $\langle x, (0.3, 0.3), (0.6, 0.7) \rangle$ and let $\tau = \{ 0_{\neg}, G, 1_{\neg} \}$ be an IFT on X. Then the IFS A = $\langle x, (0.4, 0.3), (0.5, 0.6) \rangle$ is an IF $\alpha \pi$ GCS but not an IFPCS in X, as cl(int(A)) \nsubseteq A.

Remark 3.18: An IFSP closedness is independent of an IFaG closedness.

Example 3.19: Let X = { a, b } and G = $\langle x, (0.1, 0.9), (0.6, 0.1) \rangle$ and let $\tau = \{ 0_{\sim}, G, 1_{\sim} \}$ be an IFT on X. Consider an IFS A = $\langle x, (0, 0.4), (0.6, 0.6) \rangle$ in X. Since $\alpha cl(A) \notin G$ even though A \subseteq G and G is an IFOS in X, A is not an IF $\alpha \pi$ GCS in X. But A is an IFSPCS in (X, τ).

Example 3.20: Let X = { a, b } and G = $\langle x, (0.6, 0.7), (0.3, 0.2) \rangle$ and let $\tau = \{ 0_{\sim}, G, 1_{\sim} \}$ be an IFT on X. Then the IFS A = $\langle x, (0.7, 0.8), (0.1, 0.2) \rangle$ is an IF $\alpha \pi$ GCS but not an IFSPCS in X since int(cl(int(A))) = $1_{\sim} \not\subseteq A$.

Remark 3.21: An IF $\alpha \pi$ G closedness is independent of IF γ closedness.

Example 3.22: Let X = { a, b } and G = $\langle x, (0.4, 0.6), (0.2, 0.2) \rangle$ and let $\tau = \{0, G, 1, V\}$ be an IFT on X. Then the IFS A = $\langle x, (0.4, 0.3), (0.6, 0.2) \rangle$ is an IF γ CS but not an IF $\alpha \pi$ GCS in X, as α cl(A) $\not\subseteq$ G even though A \subseteq G and G is an IF π OS in X.

Example 3.23: Let X = { a, b } and G = $\langle x, (0.5, 0.1), (0.5, 0.9) \rangle$ and let $\tau = \{0, G, 1, V\}$ be an IFT on X. Then the IFS A = $\langle x, (0.7, 0.8), (0.2, 0.1) \rangle$ is an IF $\alpha \pi$ GCS but not an IF γ CS in X, as cl(int(A)) \cap int(cl(A)) \nsubseteq A.

Remark 3.24: The intersection of any two IF $\alpha \pi$ GCS is not an IF $\alpha \pi$ GCS in general as seen from the following example.

Example 3.25: Let X = { a, b } and G = $\langle x, (0.5, 0), (0.1, 1) \rangle$ and let $\tau = \{0, G, 1, \}$ be an IFT on X. Then the IFS A = $\langle x, (0.2,1), (0.7, 0) \rangle$, B = $\langle x, (0.5, 0), (0.3, 1) \rangle$ are IF $\alpha \pi$ GCS. Now A \cap B = $\langle x, (0.2,0), (0.7, 1) \rangle$. Since $\alpha cl(A \cap B) \notin G$ even though A \cap B \subseteq G and G is an IF π OS in X, A \cap B is not an IF $\alpha \pi$ GCS in X.

Theorem 3.26: Let (X, τ) be an IFTS. Then for every $A \in IF\alpha \pi GC(X)$ and for every $B \in IFS(X)$, $A \subseteq B \subseteq \alpha cl(A)$ implies $B \in IF\alpha \pi GC(X)$.

Proof: Let an IFS $B \subseteq U$ and U be an IFOS in X. Since $A \subseteq B$, $A \subseteq U$ and A is an IF $\alpha \pi$ GCS, $\alpha cl(A) \subseteq U$. By hypothesis $B \subseteq \alpha cl(A)$, $\alpha cl(B) \subseteq \alpha cl(A) \subseteq U$. Therefore $\alpha cl(B) \subseteq U$. Hence B is an IF $\alpha \pi$ GCS of X.

Theorem 3.27: If A is an IFOS in (X, τ) and an IF $\alpha \pi$ GCS in (X, τ) , then A is an IF α CS in X. **Proof:** Let A be an IFOS in X. Since A \subseteq A, by hypothesis α cl(A) \subseteq A. But A $\subseteq \alpha$ cl(A). Therefore α cl(A) = A. Hence A is an IF α CS of X.

Theorem 3.28: The union of IF $\alpha \pi$ GCS A and B is an IF $\alpha \pi$ GCS in (X, τ), if A and B are IFCS in (X, τ).

Proof: Since A and B are IFCS in X, cl(A) = A and cl(B) = B. Assume that A and B are IF $\alpha \pi$ GCS in (X, τ). Let $A \cup B \subseteq U$ and U be IF π OS in X. Then $cl(int(cl(A \cup B))) = cl(int(A \cup B)) \subseteq cl(A \cup B) = A \cup B \subseteq U$. That is $\alpha cl(A \cup B) \subseteq U$. Therefore the union of A and B is an IF $\alpha \pi$ GCS in (X, τ).

Theorem 3.29: Let (X, τ) be an IFTS and A be an IFS in X. Then A is an IF $\alpha \pi$ GCS if and only if A \bar{q} F implies $\alpha cl(A) \bar{q}$ F for every IFCS F of X.

Proof: Necessity: Let F be an IFCS in X and let A \bar{q} F. Then A \subseteq F^c, where F^c is an IF π OS in X. Therefore $\alpha cl(A) \subseteq F^c$, by hypothesis. Hence $\alpha cl(A) \bar{q}$ F.

Sufficiency: Let F be an IFCS in X and let A be an IFS in X. Then by hypothesis, A \bar{q} F implies $\alpha cl(A) \bar{q}$ F. Then $\alpha cl(A) \subseteq F^c$ whenever $A \subseteq F^c$ and F^c is an IFOS in X. Hence A is an IF $\alpha \pi$ GCS in X.

549

Theorem 3.30: Let (X, τ) be an IFTS. Then IF $\alpha O(X) = IF\alpha C(X)$ if and only if every IFS in (X, τ) is an IF $\alpha \pi$ GCS in X.

Proof: Necessity: Suppose that $IF\alpha O(X) = IF\alpha C(X)$. Let $A \subseteq U$ and U be an IFOS in X. This implies $\alpha cl(A) \subseteq \alpha cl(U)$. Since U is an IFOS, U is an IF αOS in X. Since by hypothesis U is an IF αCS in X, $\alpha cl(U) = U$. This implies $\alpha cl(A) \subseteq U$. Therefore A is an IF $\alpha \pi$ GCS of X.

Sufficiency: Suppose that every IFS in (X, τ) is an IF $\alpha \pi$ GCS in X. Let $U \in IFO(X)$, then $U \in IF\alpha O(X)$. Since $U \subseteq U$ and U is IFOS in X, by hypothesis $\alpha cl(U) \subseteq U$. But clearly $U \subseteq \alpha cl(U)$. Hence $U = \alpha cl(U)$. That is $U \in IF\alpha C(X)$. Hence $IF\alpha O(X) \subseteq IF\alpha C(X)$.

Let $A \in IF\alpha C(X)$ then A^c is an IF αOS in X. But $IF\alpha O(X) \subseteq IF\alpha C(X)$. Therefore $A^c \in IF\alpha C(X)$. Hence $A \in IF\alpha O(X)$. This implies $IF\alpha C(X) \subseteq IF\alpha O(X)$. Thus $IF\alpha O(X) = IF\alpha C(X)$.

Theorem 3.31: If A is an IFOS and an IF $\alpha \pi$ GCS in (X, τ), then

(i) A is an IFROS in X

(ii) A is an IFRCS in X.

Proof: (i): Let A be an IF π OS and an IF α GCS in X. Then α cl(A) \subseteq A. This implies cl(int(cl(A))) \subseteq A. That is int(cl(A)) \subseteq A. Since A is an IFOS, A is an IFPOS in X. Hence A \subseteq int(cl(A)). Therefore A = int(cl(A)). Hence A is an IFROS in X. (ii): Let A be an IFOS and an IF $\alpha \pi$ GCS in X. Then cl(int(cl(A))) \subseteq A. That is cl(int(A)) \subseteq A. Since A is an IFOS, A is an IFOS, A is an IFOS, A is an IFOS, A is an IFOS in X.

IFSOS in X. Hence $A \subseteq cl(int(A))$. Therefore A = cl(int(A)). Hence A is an IFRCS in X.

REFERENCES

- [1] Atanassov. K., Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96.
- [2] Coker, D., An introduction to fuzzy topological space, Fuzzy sets and systems, 88, 1997, 81-89.
- [3] El-Shafhi, M.E., and A. Zhakari., Semi generalized continuous mappings in fuzzy topological spaces, J. Egypt. Math. Soc. 15(1)(2007), 57-67.
- [4] Gurcay, H., Coker, D., and Haydar, A., On fuzzy continuity in intuitionistic fuzzy topological spaces, jour. of fuzzy math., 5(1997), 365-378.
- [5] Hanafy, I.M., **Intuitionistic fuzzy continuity**, Canad. Math Bull. XX(2009), 1-11.
- [6] Murugesan, S., and Thangavelu, P., Fuzzy Pre semi closed sets, Bull. Malays. Math. Sci. Soc. 31 (2008), 223-232.
- [7] Sarsak, M.S., and Rajesh, N., π Generalized Semi Preclosed Sets, International Mathematical Forum, 5 (2010), 573-578.
- [8] Thakur, S.S., and Rekha Chaturvedi, Regular generalized closed sets in Intuitionistic fuzzy topological spaces, Universitatea Din Bacau, Studii Si Cercetari Stiintifice, Seria: Matematica, 16 (2006), 257-272.
- [9] Zadeh, L. A., Fuzzy sets, Information and control, 8 (1965), 338-353.
- [10] Zaitsav.V., On certain classes of topological spaces and their bicompactifications, Dokl Akad Nauk SSSR (178),778-779.