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I. INTRODUCTION 

     The concept of fuzzy sets was introduced by Zadeh [9] and later Atanassov [1] generalized this idea to intuitionistic fuzzy 

sets using the notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy topological spaces using the 

notion of intuitionistic fuzzy sets. Sarsak and Rajesh[7] introduced 𝜋-generalized semi-Preclosed sets. In this paper we introduce 

intuitionistic fuzzy 𝜋-generalized  closed sets and study some of their properties.  

 

II. PRELIMINARIES 

in X is an object having the form  

                                                 A = {  x, μA (x), νA(x)  / x  X } 

where the functions μA(x): X → [0, 1] and  νA(x): X → [0, 1] denote the degree of membership (namely μA(x)) and the degree 

of non-membership (namely νA(x)) of each element x  X to the set A, respectively, and 0 ≤ μA(x) + νA(x) ≤ 1 for each x  X. 

We denote the set of all intuitionistic fuzzy sets in X, by IFS (X). 

 

Definition 2.2: [1]  Let A and B be IFSs of the form    

A = {  x, μA(x), νA(x)  / x  X } and B = {  x, μB(x), νB(x)  / x  X }.  

Then 

(a) A  B if and only if μA(x) ≤ μB (x) and νA(x) ≥ νB(x) for all x  X 

(b) A = B if and only if  A  B and B  A 

(c) Ac = {  x, νA(x), μA(x)  /  x  X }        

(d) A  B = {  x, μA(x)  μB(x), νA(x)  νB(x)  / x  X } 

(e) A  B = {  x, μA(x)  μB(x), νA(x)  νB(x)   / x  X } 

 

For the sake of simplicity, we shall use the notation A =  x, μA, νA  instead of              A = {  x, μA(x), νA(x)  / x  X }. Also 

for the sake of simplicity, we shall use the notation A =   x, (μA, μB ), (νA, νB)   instead of A =  x, (A/μA, B/μB), (A/νA, B/νB) . 

 

The intuitionistic fuzzy sets 0~ = {  x, 0, 1  / x  X } and  1~ = {  x, 1, 0  / x  X}   are respectively the empty set and the 

whole set of  X. 

 

Definition 2.3: [2] An intuitionistic fuzzy topology (IFT in short) on X is a family τ of IFSs in X satisfying the following axioms. 

(i) 0~, 1~  τ  

(ii)  G1  G2  τ,   for any G1, G2  τ 

(iii)  Gi  τ for any family { Gi /  i  J }  τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an 

intuitionistic fuzzy open set (IFOS in short) in X.  

 

The complement Ac of an IFOS A in an IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X. 

 

Definition 2.4: [2] Let (X, τ) be an IFTS and A =  x, μA, νA  be an IFS in X. Then the intuitionistic fuzzy interior and an 

intuitionistic fuzzy closure are defined by  

int(A) =   { G / G is an IFOS in X and G  A }, 

cl(A)  =  { K / K is an IFCS in X and A  K }. 
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Note that for any IFS A in (X, τ), we have cl(Ac) = (int(A))c and  int(Ac) = (cl(A))c. 

 

Definition 2.5:[7] A subset of A of a space (X, τ) is called:  

(i)   regular open if A = int (cl(A)).  

(ii)   open if A is the union of regular open sets. 

 

Definition 2.6:[4] An IFS A =  x, μA, νA  in an IFTS (X, τ) is said to be an intuitionistic fuzzy semi closed set  (IFSCS  in short) 

if int(cl(A))  A. 

 

Definition 2.7:[4] An IFS A =  x, μA, νA  in an IFTS (X, τ) is said to be an intuitionistic fuzzy semi open set  (IFSOS  in short) 

if A  cl(int(A)). 

 

Definition 2.8:[4]  An IFS A of an IFTS (X, τ) is an  

(i)  intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A))  A, 

(ii) intuitionistic fuzzy pre open set (IFPOS in short) if A  int(cl(A)). 

 

Definition 2.9:[4]  An IFS A of an IFTS (X, τ) is an  

(i)  intuitionistic fuzzy α-open set (IFOS in short) if A int(cl(int(A))), 

(ii) intuitionistic fuzzy α-closed set (IFCS in short) if  cl(int(cl(A))  A. 

 

Definition 2.10:[5]  An IFS A of an IFTS (X, τ) is an  

(i)  intuitionistic fuzzy -open set (IFOS in short) if  A  int(cl(A))  cl(int(A)), 

(ii) intuitionistic fuzzy -closed set (IFCS in short) if  cl(int(A))  int(cl(A))  A. 

 

Definition 2.11:[4]  An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy semi pre open set (IFSPOS in short) if there exists an 

IFPOS B such that B  A  cl(B). 

 

Definition 2.12:[4]  An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy semi pre closed set (IFSPCS in short) if there exists an 

IFPCS B such that int(B)  A  B. 

 

The family of all IFSPCSs (respectively IFSPOSs) of an IFTS (X, τ) is denoted by IFSPC(X) (respectively IFSPO(X)).  

 

Definition 2.13:[7]  An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)), 

(ii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int(A)). 

Definition 2.14:[7]  An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A)  U 

whenever A  U and U is an IFOS in X.  

 

Definition 2.15:[6]  Let an IFS A of an IFTS (X, τ). Then the semi closure of A (scl(A) in short) is defined as scl (A) =  { K / 

K is an IFSCS in X and A  K }. 

 

Definition 2.16:[6]  Let A be an IFS of an IFTS (X, τ). Then the semi interior of A (sint(A) in short) is defined as sint(A) =  

{ K / K is an IFSOS in X and K  A}. 

 

Definition 2.17:[8] An IFS A of an IFTS (X, τ) is an intuitionistic fuzzy generalized semi closed set (IFGSCS in short) if scl(A) 

 U whenever A  U and U is an IFOS in X. 

 

Result 2.18 : [8]  Let (X, τ) be an IFS. If  A is an IFS of X then scl(Ac) = (sint(A))c 

 

Result 2.19:  Let A be an IFS in (X, τ), then  

(i)  scl(A)  =  A  int(cl(A)), 

(ii) sint(A) = A  cl(int(A)). 

 

 

 

 

 

 

 

III. Intuitionistic fuzzy   g closed sets  
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     In this section, we have introduced intuitionistic fuzzy alpha  generalized closed sets and studied some of their properties. 

 

Definition 3.1: An IFS A in (X, τ) is said to be an intuitionistic fuzzy alpha  generalized closed set (IF GCS in short) if 

cl(A)  U whenever A  U and U is an  IF OS in (X, τ). Here The family of all IF GCS of an IFTS (X, τ) is denoted by 

IF GC(X). 

 

Example 3.2: Let X = { a, b } and let τ = { 0~, G, 1~ } be an IFT on X, where  G =  x, (0.7, 0.6), (0.2, 0.3) . Here μG(a)= 0.8, 

μG(b)= 0.7, νG(a)= 0.2 and νG(b)= 0.3. Let us consider the IFS A =  x, (0.2, 0.2), (0.7, 0.6) . Clearly if  A  1~ , then    cl(A) 

 1~.  Now let us consider the IFOS G in (X, τ). Clearly A  G. Now   cl(A) = A  G . Hence cl(A)  U whenever A  U 

and U is an  IF OS in (X, τ). Therefore, the IFS A is an IF GCS in (X, τ).  

 

Theorem 3.3: Every IFCS in (X, τ) is an IF GCS (X, τ) but not conversely. 

Proof: Assume that A is an IFCS in (X, τ). Let us consider an IFS A  U and U be an IF OS in (X, τ). Since cl(A)  cl(A) 

and A is an IFCS in X, cl(A)  cl(A) = A  U. That is cl(A)  U. Therefore, A is an IF GCS in X. 

 

Example 3.4: Let X = { a, b } and let τ = { 0~, G,  1~ } where G =  x, (0.4, 0.2),  (0.5, 0.6) . Consider the IFS A =  x, (0.5, 

0.3), (0.5, 0.6) . Clearly A  1~ and  cl(A) =  x, (0.5, 0.6), (0.4, 0.2)   1~. Hence A is an IF GCS. But A is not  an IFCS 

in X. 

 

Theorem 3.5: Every IFCS in (X, τ) is an IF GCS in (X, τ) but not conversely. 

 

Proof: Let us consider an IFS A  U and U be an IFOS in (X, τ). Also let A is an IFCS in X. This implies cl(A) = A. Hence 

cl(A)  U. Therefore A is an  IF GCS in X. 

 

Example 3.6: Let X = { a, b } and let τ = { 0~, G1, G2,  1~ }, where G1 =  x, (0.3, 0.2), (0.6, 0.7) , G2 =  x, (0.8, 0.8), (0.2, 0.2) 

. Then the IFS A = x, (0.4, 0.4),  (0.5, 0.6)   is an IF GCS in X. But A is not an IFCS in X because cl(int(cl(A))) =   x, 

(0.6, 0.7), (0.3, 0.2)  ⊈ A. 

 

Theorem 3.7: Every IFRCS in (X, τ) is an IF GCS in (X, τ) but not conversely. 

 

Proof: Let A be an IFRCS in (X, τ). Since every IFRCS is an IFCS, A is an IFCS    in X. Hence by Theorem 3.3, A is an IF
 GCS in X. 

 

Example 3.8: Let X = { a, b } and let τ = { 0~, G, 1~ } be an IFT on X, where   G =  x, (0.5, 0.6), (0.2, 0.3) . Then the IFS A = 

 x, (0.2, 0.2), (0.8, 0.7)  is an   IF GCS in X but not an IFRCS in X. 

 

Theorem 3.9: Every IFGCS in (X, τ) is an IF GCS in (X, τ) but its converse may not be true in general. 

 

Proof: Assume that A be an IFGCS in (X, τ). Let A  U and U be an IF OS in X. By hypothesis cl(A)  U. Clearly cl(A)  

cl(A). This implies cl(A)  U whenever  A  U and U is an IF OS in X. Hence A is an IF GCS in X. 

 

Example 3.10: Let X = { a, b } and let τ = { 0~, G, 1~ } be an IFT on X, where                        G =  x, (0.2, 0.8), (0.3, 0.1) . 

Then the IFS A =  x, (0.1, 0), (0.4, 0.8)  is an  IF GCS but A is not an IFGCS in X, as cl(A) ⊈ G even though A  G and 

G is an IF OS in X. 

 

Theorem 3.11: Every IF GCS in (X, τ) is an IFGSCS in (X, τ) but its converse may not be true in general. 

 

Proof: Assume that A is an IF GCS in (X, τ). Let an IFS A  U and U be an IF OS in (X, τ). By hypothesis cl(A)  U. 

That is A ∪ cl(int(cl(A)))  U. This implies A∪ int(cl(A))  U. Therefore scl(A) = A ∪ int(cl(A)))  U. Hence A is an IFGSCS   

in X. 

 

Example 3.12: Let X = { a, b } and let τ = { 0~, G, 1~ } be an IFT on X, where                        G =  x, (0.2, 0.3), (0.4, 0.5) . 

Then the IFS A =  x, (0.1, 0), (0.4, 0.5)  is an IFGSCS in X but A is not an IF GCS in X, since αcl(A) ⊈ G even though A 

 G and G is an IF OS  in (X, τ). 

 

 

 

 

 

Remark 3.13: An IFGSPCS in (X, τ)  is need not be an IF GCS in (X, τ) 
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Example 3.14: Let X = { a, b } and G =  x, (0, 0.8), (0.5, 0.1)  and let  τ = { 0~, G, 1~ } be an IFT on X. Then the IFS  A =  x, 

(0, 0.3), (0.7, 0.7)   is an IFGSPCS but A is not an IF GCS in X since αcl(A) ⊈ G even though A  G and G is an IF OS  

in (X, τ). 

 

Remark  3.15: An IFP closedness is independent of an IF G closedness. 

 

Example 3.16: Let X = { a, b } and G =  x, (0, 0.9), (0.5, 0.1)  and let   τ = { 0~, G, 1~ } be an IFT on X. Then the IFS  A =  

x, (0, 0.3), (0.6, 0.6)   is an IFPCS but not an IF GCS in X, as αcl(A) ⊈ G even though A  G and G is an IF OS  in X. 

 

Example 3.17: Let X = { a, b } and G =  x, (0.3, 0.3), (0.6, 0.7)  and let  τ = { 0~, G, 1~ } be an IFT on X. Then the IFS  A =  

x, (0.4, 0.3), (0.5, 0.6)   is an IF GCS but not an IFPCS in X, as cl(int(A)) ⊈ A. 

 

Remark  3.18: An IFSP closedness is independent of an IFG closedness. 

 

Example 3.19: Let X = { a, b } and G =  x, (0.1, 0.9), (0.6, 0.1)  and let   τ = { 0~, G, 1~ } be an IFT on X. Consider an IFS A 

=  x, (0, 0.4), (0.6, 0.6)  in X. Since αcl(A) ⊈ G even though A  G and G is an IFOS in X, A is not an IF GCS  in X. But 

A is an IFSPCS in (X, τ). 

 

Example 3.20: Let X = { a, b } and G =  x, (0.6, 0.7), (0.3, 0.2)  and let    τ = { 0~, G, 1~ } be an IFT on X. Then the IFS A =  

x, (0.7, 0.8), (0.1, 0.2)   is an  IF GCS but not an IFSPCS in X since int(cl(int(A))) = 1~ ⊈ A. 

 

Remark 3.21: An IF G closedness is independent of IF closedness. 

 

Example 3.22: Let X = { a, b } and G =  x, (0.4, 0.6), (0.2, 0.2)  and let  τ = {0~, G, 1~} be an IFT on X. Then the IFS A =  x, 

(0.4, 0.3), (0.6, 0.2)  is an IFCS but not an IF GCS in X, as αcl(A) ⊈ G even though A  G and G is an  IF OS in X. 

 

Example 3.23: Let X = { a, b } and G =  x, (0.5, 0.1), (0.5, 0.9)  and let   τ = {0~, G, 1~} be an IFT on X. Then the IFS A =  

x, (0.7, 0.8), (0.2, 0.1)   is an   IF GCS but not an IFCS in X, as cl(int(A)) ∩ int(cl(A)) ⊈ A. 

 

Remark 3.24: The intersection of any two IF GCS is not an IF GCS in general as seen from the following example. 

 

Example 3.25: Let X = { a, b } and G =  x, (0.5, 0), (0.1, 1)  and let   τ = { 0~, G, 1~ } be an IFT on X. Then the IFS A =  x, 

(0.2,1), (0.7, 0) , B =  x, (0.5, 0), (0.3, 1)  are IF GCS. Now A ∩ B =  x, (0.2,0), (0.7, 1) .  Since  αcl(A ∩ B) ⊈ G even 

though A ∩ B  G and G is an IF OS in X, A ∩ B is not an IF GCS in X. 

 

Theorem 3.26: Let (X, τ) be an IFTS. Then for every A ∈ IF GC(X) and for every B ∈ IFS(X), A  B  cl(A) implies 

B ∈ IF GC(X). 

 

Proof: Let an IFS B  U and U be an IFOS in X. Since A  B, A  U and A is  an IF GCS, cl(A)  U. By hypothesis B 

 cl(A), cl(B)  cl(A)  U. Therefore cl(B)  U. Hence B is an IF GCS of X. 

 

Theorem 3.27: If A is an IFOS in (X, τ) and an IF GCS in (X, τ), then A is an IFCS in X.  

Proof: Let A be an IFOS in X. Since A  A, by hypothesis cl(A)  A. But                           A  cl(A). Therefore cl(A) = 

A. Hence A is an IFCS of X. 

 

Theorem 3.28: The union of IF GCS A and B is an IF GCS in (X, τ), if A and  B are IFCS in (X, τ). 

 

Proof: Since A and B are IFCS in X, cl(A) = A and cl(B) = B. Assume that A and   B are                IF GCS in (X, τ). Let 

A∪B  U and U be IF OS in X. Then cl(int(cl(A∪B))) = cl(int(A∪B))  cl(A∪B)  = A∪B  U. That is αcl(A∪B)  U. 

Therefore the union of A and B is an IF GCS in (X, τ). 

 

Theorem 3.29:  Let (X, τ) be an IFTS and A be an IFS in X. Then A is an IF GCS if and only if  A �̅� F implies cl(A) �̅� F  

for every IFCS  F of  X. 

 

Proof: Necessity:  Let F be an IFCS in X and let  A �̅� F. Then A  Fc, where  Fc  is an IF OS in X. Therefore cl(A)  Fc, by 

hypothesis. Hence cl(A) �̅� F. 

Sufficiency:  Let F be an IFCS in X and let A be an IFS in X.  Then by hypothesis, A �̅� F implies cl(A) �̅� F.  Then cl(A)  

Fc whenever A  Fc and Fc is an IFOS in X. Hence A is an IF GCS in X. 

 

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org


© IJEDR 2018 | Volume 6, Issue 3 | ISSN: 2321-9939 

 

IJEDR1803093 International Journal of Engineering Development and Research (www.ijedr.org) 550 

 

Theorem 3.30: Let (X, τ) be an IFTS. Then IFO(X) = IFC(X) if and only if every IFS in (X, τ) is an IF GCS in X. 

 

Proof: Necessity: Suppose that IFO(X) = IFC(X). Let A  U and U be an IFOS     in X. This implies cl(A)  cl(U). Since 

U is an IFOS, U is an IFOS in X. Since by hypothesis U is an IFCS in X, cl(U) = U. This implies cl(A)  U. Therefore A 

is an IF GCS of X. 

Sufficiency: Suppose that every IFS in (X, τ) is an IF GCS in X. Let   U ∈ IFO(X), then U ∈ IFO(X). Since U  U and U 

is IFOS in X, by hypothesis  cl(U)  U. But clearly U  cl(U). Hence U = cl(U). That is U ∈ IFC(X).  Hence IFO(X)  

IFC(X).   

Let A ∈ IFC(X) then Ac
 is an IFOS in X. But IFO(X)  IFC(X). Therefore Ac ∈ IFC(X). Hence A ∈ IFO(X). 

This implies IFC(X)  IFO(X). Thus IFO(X) = IFC(X). 

 

Theorem 3.31: If A is an IFOS and an IF GCS in (X, τ), then  

(i)  A is an IFROS in X 

(ii) A is an IFRCS in X. 

Proof: (i): Let A be an IF OS and an IFGCS in X. Then cl(A)  A. This implies        cl(int(cl(A)))  A. That is int(cl(A)) 

 A.  Since A is an IFOS, A is an IFPOS in X. Hence A  int(cl(A)). Therefore A = int(cl(A)). Hence A is an IFROS in X. 

(ii): Let A be an IFOS and an IF GCS in X. Then cl(int(cl(A)))  A. That is cl(int(A))  A.  Since A is an IFOS, A is an 

IFSOS in X. Hence A  cl(int(A)). Therefore A = cl(int(A)). Hence A is an IFRCS in X. 
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