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Abstract - In this paper, I had tried to make use of the convergence concept of famous Geometric Series to study about 

the time period (in weeks) of recovering from infected diseases. Analyzing for various common ratios, I try to 

determine the best period for healing and determine the best possible threshold limit corresponding to the critical ratio. 
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1.  Introduction  

In modern days, people suffer from various health issues beginning from small infection caused by virus or some bacteria. If 

unnoticed for longer period, this will eventually cause decline in their health, sometimes even ending their life.  

Hence, a systematic mathematical analysis is carried out to specify the remedial measures which will eventually help the 

patients suffering from a particular infection, thereby making their life better.  

 

2.  Mathematical Set-Up of the Situation  

Let us assume the case when a person is affected by unknown infection caused either by unidentified virus or by specific 

harmful bacteria. Let the infection rate be r% where 0 < r < 1. The values for r are given in accordance with r = 0 denoting no 

infection and r = 1 denoting 100 percent infected. We make assumption that if a person is affected by an infection, after taking 

proper treatment the infection reduces over period of specific time and he/she gets well subsequently.  

If in the first period, a person’s health condition is 100 percent good and suddenly he gets infected with infection rate r%. 

During the second period, the person’s health condition will be declined by r% and so his health condition is r percent affected 

and 1 – r percent unaffected. Thus, if   r = 0.6, then during the second period, the person’s health condition will be 60% 

affected and 40% unaffected.  

Now during the third period, the person’s health condition is further declined by r% and so at this instant, the person’s health 

condition would be 
2 %r r r =  percent affected and 

2(1 )%r− percent unaffected. Thus, if as before, r = 0.6, then at the 

third period, the person’s health will be 36% affected and 64% unaffected. The steep decrease in the affected rate from second 

period to third period is because of the treatment that the person undergoes.  

Continuing in same fashion, we see that, during successive periods, the affected percent will come down drastically leading 

eventually to complete cure from the infection. This is mathematically possible because the sequence 
nr converges to 0, when 

n is large enough. That is, lim 0n

n
r

→
= , since 0 < r < 1.  

3. The Critical Ratio 

From the previous section, we see that the person’s infected rate in n successive periods of time is given by 
2 3 4 11, , , , ,..., nr r r r r −

. These are the first n terms of a sequence called Geometric Progression abbreviated as G.P. 

whose first term is 1 and common ratio is r.  

Though, as the terms converge to 0, practically it is impossible to conceive the periods extending up to infinity. To overcome 

this and provide a practically viable solution, we first consider the total infected rate during the time from period m to period n 

where m < n.  

The sum of first k terms of the Geometric Series is given by the formula  

2 3 4 1 1
1

1

k
k r

r r r r r
r

− −
+ + + + + + =

−
                  (1)  

This is because of the fact ( )2 3 4 11 (1 ) 1k kr r r r r r r−+ + + + ++  − = − .  

 

Now, using (1), we obtain the total infected rate during the time from period m to period n where m < n as follows:  
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We can now call this final result 
1

m nr r

r

−

−
 as the Critical Ratio as this value is the key factor for the conclusion of this work.  

 

 

4.  Simulation for different periods of time  

Using the value of Critical Ratio from previous section, we now try to simulate the infected rate values for various choices of r 

as well as values of m, n which we may refer as number of weeks to get rid of the infection.  

For the simulation experiment, we consider eight values of r given by  

0 28,0 36,0 50,0 68,0 75,0 76,0 80,0 84          

For these eight values, we consider the periods from m to n weeks where m < n in four possible cases given by 

( , ) (2,5), (3,6), (4,7), (3,5).m n =  Using the Critical ratio which gives the total infected rate from period m to period n, we 

construct the following tabular columns.  
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1

m nr r
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−
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0 36  
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     5 

 

0 19305216  

 

0 36  
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0 06949877  

 

0 36  
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0 02501955  

   

0 36  
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0.06345216  
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1

m nr r

r

−

−
 

 

 0 68  
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0 99064576  

 

 0 68  
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0 67363911  

 

 0 68  
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0 45807459  

  

 0 68   
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0 52824576  
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1

m nr r

r

−
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 0 50  
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     5 

 

 0 4375  

 

 0 50  

 

    3 

 

     6 

 

 0 21875  

 

 0 50  
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0 109375  

   

 0 50  
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     5 

 

  0 1875  
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5.  

Threshold Value  

From the tabular values of previous section, we find that for  r = 0 28,0 36,0 50,0 68,0 75      the period from 4 weeks to 

7 weeks gives the least value of the critical ratio. Hence the best option for these values of r is to consider the treatment from 4  

to 7 weeks.  

Now, for the values of  r = 0 76,0 80,0 84   the period from 3 weeks to 5 weeks provide the least value of the critical ratio. 

Hence for these values of r, appropriate decision would be from 3 to 5 weeks.  

Now, does there exist, a value of r, for which these two decisions are equally possible? We call such value of r as the 

Threshold Value of the infected rate r.  

We find from our calculations, that such a Threshold value of r must be some number between 0 75 and 0 76 . To be more 

precise, the Threshold value of r is 0 755 , since for this value of r, the critical ratios agree to first decimal places. Also we 

note that this is precisely the midpoint of 0 75  and 0 76 .  

 

6. Conclusion 

From the discussions of the previous sections, we make the following conclusions.  

(i)  The Threshold value of the infected rate r = 0 755  

(ii) If the infected rate is below the Threshold Value, then the best way to recover from the infection would be to take proper 

treatment from 4 to 7 weeks.  

(iii)  If the infected rate is above the Threshold Value, then the best way to recover from the infection would be to take proper 

treatment from 3 to 5 weeks.  

(iv) For any affected rate, if the person undergo proper medical treatment for specific period of time, the infection rate will 

gradually decrease leading to the recovery of the health.  

(v) This result does not hold true for infections or diseases which doesn’t have proper vaccinations or medicines to cure, say 

like HIV virus.  

Thus using simple mathematical procedure, we have found ways to improve the health condition under available and suitable 

environments.   

 

7. REFERENCES 

[1].  C. Annamalai, Applications of Exponential Decay and Geometric Series in Effective Medicine Storage, Advances in 

Bioscience and Biotechnology, January 2010, Issue 1, 51 – 54. 

[2].   R. Ramya, Geometric Series in Financial Mathematics, IJMRME, Volume I, Issue I, 2015, 305 – 308.  

[3].  Ayush Arya, Alternative Formula for Sum of Arithmetic and Geometric Progressions, IJARCET, Volume 5, Issue 8, 

August 2016, 2312 – 2315.  

[4].    Donna Roberts, Geometric Sequences and Series.  

 

 

 0 75  

 

    2 

 

     5 

 

1 30078125  

 

 0 75  

 

    3 

 

     6 

 

0 97558593  
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