On Strongly αg*p-Irresolute Functions in Topological Spaces

S.Sathyapriya¹, M.Kousalya², S.Kamali³ ¹Assistant Professor, Department of Mathematics, ^{2,3}PG Scholar, Sri Krishna Arts and Science College, Coimbatore.

Abstract - In this paper, we introduce and investigate the notion of strongly $\alpha g^* p$ -irresolute functions. We obtain fundamental properties and characterization of strongly $\alpha g^* p$ -irresolute functions and discuss the relationships between strongly $\alpha g^* p$ -irresolute functions and other related functions.

Keywords: strongly ag*p -irresolute, strongly α -irresolute, strongly β- ag*p irresolute.

Mathematics Subject Classification: 54C05,54C08,54C10.

1.INTRODUCTION

Dontchev[4] introduced the notion of contra continuous functions in 1996. Jafari and Noiri[9] introduced contra precontinuous functions. Ekici.E[6] introduced almost contra precontinuous functions in 2004.. Dontchev and Noiri [5] introduced and investigated contra semi-continuous functions and RC continuous functions between topological spaces.Veerakumar [25] also introduced contra pre semi-continuous functions. Recently, S.Sekar and P.Jayakumar[20] introduced contra gp*-continuous functions. In this paper we introduce and study the new class of functions called contra ag*p-continuous and almost contra α g*p-continuous functions in topological spaces. Also we define the notions of contra α g*p-locally indiscrete space and study some of their properties.

2. PRELIMINARIES

Throughout this paper (X, τ) , (Y, σ) and (Z, η) (or simply X, Y, and Z) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. For a subset A of X, the closure of A and interior of A will be denoted by cl (A) and int(A) respectively. The union of all αg^*p -open sets of X contained in A is called αg^*p -interior of A and it is denoted by αg^*p -int (A). The intersection of all αg^*p -closed sets of X containing A is called αg^*p -closure of A and it is denoted by αg^*p -cl(A).

Also the collection of all αg^*p -open subsets of X containing a fixed point x is denoted by αg^*p -O(X,x).

Definitions 2.1: A subset A of a topological space (X, τ) is called

(i) preopen [13] if $A \subseteq int (cl (A))$ and preclosed if $cl (int(A)) \subseteq A$.

(ii) semi-open [11] if $A \subseteq cl$ (int (A)) and semi-closed if int (cl (A)) $\subseteq A$.

(iii) α -open [14] if $A \subseteq$ int (cl (int (A))) and α -closed if cl(int(cl(A))) \subseteq A.

(iv) semi-preopen [1] (β -open) if $A \subseteq cl(int(cl(A)))$ and semi-preclosed (β -closed) if int (cl (int (A))) $\subseteq A$.

Definition 2.2: A subset A of a topological space (X, τ) is called

(i) generalized preclosed (briefly,gp-closed)[12] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(ii) generalized semi-preclosed (briefly, gsp-closed)[3] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

(iii) generalized pre regularclosed (briefly, gpr-closed)[7] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open in X.

(iv) generalized star preclosed (briefly, g*p-closed set) [23] if pcl (A) \subseteq U whenever A \subseteq U and U is g-open in X.

(v) generalized pre star closed (briefly, gp*-closed set) [10] if cl (A) \subseteq U whenever A \subseteq U and U is gp-open in X.

(vi) pre semi-closed [24] if spcl (A) \subseteq U whenever A \subseteq U and U is α g-open in X.

Definition 2.3:[18] A subset A of a topological space (X, τ) is called alpha generalized star preclosed set (briefly, αg^*p -closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is αg -open in X.

Definition 2.4:[17] A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called αg^*p -continuous if f - 1(V) is αg^*p -closed set in (X, τ) for every closed set V in (Y, σ) .

Definition 2.5:[17] A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called αg^*p -irresolute if f - 1(V) is αg^*p -closed set in (X, τ) for every αg^*p -closed set V in (Y, σ) .

Definition 2.6: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called i) contra continuous [4] if f-1(V) is closed set in X for each open set V of Y. ii) contra precontinuous [9] if f - 1(V) is preclosed set in X for each open set V of Y.

iii) contra semi-continuous [5] if f-1(V) is semi-closed set in X for each open set V of Y.

iv) contra α continuous [8] if f-1(V) is α -closed set in X for each open set V of Y.

v) contra pre semi-continuous [25] if f - 1(V) is pre semi-closed set in X for each open set V of Y.

vi) contra gp-continuous if f-1(V) is gp-closed set in X for each open set V of Y.

vii) contra gpr-continuous if f-1(V) is gpr-closed set in X for each open set V of Y.

viii) contra gsp-continuous if f - 1(V) is gsp-closed set in X for each open set V of Y.

ix) contra gp*-continuous [20] if f-1(V) is gp*-closed set in X for each open set V of Y.

x) contra g*p-continuous [16] if f-1(V) is g*p-closed set in X for each open set V of Y.

Definition 2.7: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called

i) perfectly continuous [15] if f -1(V) is clopen in X for every open set V of Y.

ii) almost continuous [21] if f-1(V) is open in X for each regular open set V of Y.

iii) almost αg^*p -continuous [17] if f-1(V) is αg^*p -open in X for each regular open set V of Y.

iv) almost contra g*p-continuous [16] if f-1(V) is g*p-closed in X for each regular open set V of Y.

v) preclosed [13] if f(U) is preclosed in Y for each closed set U of X.

vi) contra preclosed [2] if f (U) is preclosed in Y for each open set U of X.

Definition 2.8: Let A be a subset of a space (X , τ) .

(i) The set $\cap \{U \in \tau \mid A \subseteq U\}$ is called the kernel of A and is denoted by ker (A).

(ii) The set \cap {F $\in X / A \subseteq F$, F is preclosed} is called the preclosure of A and is denoted by pc1(A)

Lemma 2.9: The following properties hold for subsets A, B of a space X:

(1) $x \in ker(A)$ if and only if $A \cap F \neq \phi$ for any $F \in C(X, x)$.

(2) $A \subset ker(A)$ and A = ker(A) if A is open in X.

(3) If $A \subset B$, then ker (A) \subset ker(B).

Definition 2.10[18]: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called contra αg^*p -continuous if $f^{-1}(V)$ is αg^*p -closed set in X for every open set V in Y.

.3. Strongly ag*p-irresolute functions.

Definition:3.1

A function f: $X \rightarrow Y$ is said to be strongly $\alpha g^* p$ -irresolute if $f^1(V)$ is open in X for every $\alpha g^* p$ -open set V of Y.

Definition:3.2

A function f: $X \rightarrow Y$ is said to be strongly α - irresolute if $f^{1}(V)$ is open in X for every α - open set V of Y.

Theorem:3.3

If f: $X \rightarrow Y$ is a strongly αg^*p -irresolute ,then f is strongly α -irresolute.

Proof:Let V be α - open set in Y and hence V is αg^*p -open in Y. Since f is strongly αg^*p -irresolute, then $f^1(V)$ is open in X. Therefore $f^1(V)$ is open in X for every α - open set V in Y. Hence f is strongly α - irresolute.

Theorem:3.4

If f: $X \rightarrow Y$ is a continuous and Y is a $\alpha g^* p - T_{1/2}$ -space, then f is strongly $\alpha g^* p$ -irresolute.

Proof:Let V be αg^*p -open in Y. Since Y is αg^*p -T_{1/2}-space, V is α -open in Y and hence open in Y. Since f is continuous, f¹(V) is open in X. Thus, f¹(V) is open in X for every αg^*p -open set V in Y. Hence f is strongly αg^*p - irresolute.

Theorem:3.5

If f: $X \rightarrow Y$ is a αg^*p -irresolute, X is a αg^*p -T_{1/2}-space, then f is strongly αg^*p -irresolute.

Proof:Let V be $\alpha g^* p$ -open in Y. Since f is $\alpha g^* p$ -irresolute, $f^1(V)$ is $\alpha g^* p$ -open in X. Since X is a $\alpha g^* p$ - $T_{1/2}$ -space, $f^1(V)$ is α -open in X and hence open in X. Thus, $f^1(V)$ is open in X for every $\alpha g^* p$ -open set V in Y. Hence f is strongly $\alpha g^* p$ -irresolute.

Theorem:3.6

Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ be any functions. Then

- (i) g o f: $X \rightarrow Z$ is $\alpha g^* p$ -irresolute if f is $\alpha g^* p$ -continuous and g is strongly $\alpha g^* p$ -irresolute.
- (ii) g o f: $X \rightarrow Z$ is strongly $\alpha g^* p$ -irresolute if f is strongly $\alpha g^* p$ -irresolute and g is $\alpha g^* p$ -irresolute.

Proof:

(i)Let V be a αg^*p -open set in Z. Since g is strongly αg^*p -irresolute, $g^{-1}(V)$ is open in Y. Since f is αg^*p -continuous, $f^{-1}(g^{-1}(V))$ is αg^*p -open in X.

- \Rightarrow (g o f)⁻¹(V) is α g*p -open in X for every α g*p -open set V in Z.
- \Rightarrow (g o f) is α g*p -irresolute.

(ii) Let V be a $\alpha g^* p$ -open set in Z. Since g is $\alpha g^* p$ -irresolute, $g^{-1}(V)$ is $\alpha g^* p$ -open in Y. Since f is strongly $\alpha g^* p$ -irresolute, $f^{-1}(g^{-1}(V))$ is open in X.

 \Rightarrow (g o f)⁻¹(V) is open in X for every $\alpha g^* p$ -open set V in Z.

 \Rightarrow (g o f) is strongly $\alpha g^* p$ -irresolute.

Theorem:3.7

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly $\alpha g^* p$ -irresolute.
- (ii) For each $x \in X$ and each αg^*p -open set V of Y containing f(x), there exists an open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{1}(V) \subset int (f^{1}(V))$ for each $\alpha g^{*}p$ -open set V of Y.
- (iv) $f^{1}(F)$ is closed in X for every $\alpha g^{*}p$ -closed set F of Y.

```
Proof: (i)⇒(ii):
```

Let $x \in X$ and V be a αg^*p -open set in Y containing f(x). By hypothesis, $f^1(V)$ is open in X and contains x.

Set $U=f^{1}(V)$. Then U is open in X and $f(U) \subset V$.

(ii)⇒(iii):

Let V be a $\alpha g^* p$ -open set in Y and $x \in f^1(V)$.

By assumption, there exists an open set U in X containing x, such that $f(U) \subset V$.

Then $x \in U \subset int(U)$

 \subset int (f¹(V)). Then f¹(V) \subset int(f¹(V))

 $(iii) \Rightarrow (iv):$

Let F be a αg^*p -closed set in Y. Set V= Y – F. Then V is αg^*p -open in Y.

By (iii), $f^1(V) \subset int(f^1(V))$.

Hence $f^{1}(F)$ is closed in X.

 $(iv) \Rightarrow (i):$

Let V be αg^*p -open set in Y. Let F = Y - V. That is F is αg^*p -closed set in Y. Then $f^1(F)$ is closed in X,(by (iv)). Then $f^1(V)$ is open in X. Hence f is strongly αg^*p -irresolute.

Theorem:3.8

A function f: $X \rightarrow Y$ is strongly αg^*p -irresolute if A is open in X, then f/A: $A \rightarrow Y$ is strongly αg^*p -irresolute.

Proof:Let V be a $\alpha g^* p$ -open set in Y. By hypothesis, $f^1(V)$ is open in X. But $(f/A)^{-1}(V) = A \cap f^1(V)$ is open in A and hence f/A is strongly $\alpha g^* p$ -irresolute.

Theorem:3.9

Let f: $X \rightarrow Y$ be a function and $\{A_i: i \in \Lambda\}$ be a cover of X by open sets of (X,τ) . Then f is strongly αg^*p -irresolute if $f/A_i: (A_i, \tau/A_i) \rightarrow (Y,\sigma)$ is strongly αg^*p -irresolute for each $i \in \Lambda$.

Proof:Let V be a $\alpha g^* p$ -open set in Y. By hypothesis, $(f/A_i)^{-1}(V)$ is open in A_i . Since A_i is open in X, $(f/A_i)^{-1}(V)$ is open in X for every $i \in \Lambda$.

 $f^{1}(V) = X \cap f^{1}(V)$

 $= \cup \{ A_i \cap f^1(V) : i \in \Lambda \}$

=U{ $(f/A_i)^{-1}(V)$: i $\in \Lambda$ } is open in X.

Hence f is strongly $\alpha g^* p$ -irresolute.

Theorem:3.10

Let f: $X \rightarrow Y$ be a strongly αg^*p -irresolute surjective function. If X is compact, then Y is αG^*PO -compact.

Proof:Let $\{A_i: i \in \Lambda\}$ be a cover of sg α -open sets of Y. Since f is strongly sg α -irresolute and X is compact, we get $X \subset \bigcup \{f^{1}(A_i): i \in \Lambda\}$. Since f is surjective, $Y = f(X) \subset \bigcup \{A_i: i \in \Lambda\}$. Hence Y is αG^*PO -compact.

Theorem:3.11

If $f:X \to Y$ is strongly αg^*p -irresolute and a subset B of X is compact relative to X, then f(B) is αG^*PO -compact relative to Y.

Proof: Obvious.

Definition: 3.12

A function f: $X \rightarrow Y$ is said to be

```
(i) a strongly \alpha- \alpha g^* p-irresolute function if f^1(V) is \alpha- open in X for every \alpha g^* p-open set V in Y.
(ii) a strongly \beta- \alpha g^* p-irresolute function if f^1(V) is \beta-open in X for every \alpha g^* p-open set V in Y.
```

Theorem:3.13

- (i) If f: $X \rightarrow Y$ is strongly α $\alpha g^* p$ -irresolute, then f is strongly $\alpha g^* p$ -irresolute.
- (ii) If f: $X \rightarrow Y$ is strongly α $\alpha g^* p$ -irresolute, then f is strongly β $\alpha g^* p$ -irresolute.

Proof: (i)Let f be a strongly α - αg^*p -irresolute function and let V be a αg^*p -open set in Y. Then $f^1(V)$ is α - open in X and hence open in X.

 \Rightarrow f¹(V) is open in X for every $\alpha g^* p$ -open set V in Y.

Hence f is strongly α - α g*p -irresolute.

(ii) Let f be a strongly α - α g*p -irresolute function and let V be a α g*p -open set in Y. Then

 $f^{-1}(V)$ is α -open in X and hence open in X.

 \Rightarrow f¹(V) is open in X for every αg*p -open set V in Y. \Rightarrow f¹(V) is β-open in X for every αg*p -open set V in Y.

Hence f is strongly β - αg^*p -irresolute.

Remark: 3.14

Converse of the above need not be true as seen in the following examples.

Example: 3.15

(i)Let $X = Y = \{a,b,c\}$, $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,c\}\}$ and $\sigma = \{\phi, Y, \{a\}, \{b\}, \{a,b\}\}$.

Let $f:X \rightarrow Y$ be an identity map. Here for every $\alpha g^* p$ -open set V in Y, $f^1(V)$ is open and β -open in X. Hence f is strongly $\alpha g^* p$ -irresolute and strongly β - $\alpha g^* p$ -irresolute.

But for every $\alpha g^* p$ -open set V in Y, $f^1(V)$ is not α - open in X. Thus, f is not strongly α - $\alpha g^* p$ -irresolute .Hence strongly $\alpha g^* p$ -irresolute function need not be strongly α - $\alpha g^* p$ -irresolute function and strongly β - $\alpha g^* p$ -irresolute function .

Theorem:3.16

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then g o f: $X \rightarrow Z$ is

- (i) strongly αg^*p -irresolute if f is strongly α αg^*p -irresolute and g is αg^*p -irresolute.
- (ii) strongly β αg^*p –irresolute if f is strongly αg^*p irresolute and g is αg^*p -irresolute.

Proof:Let V be an αg^*p -open set in Z. Since g is αg^*p -irresolute, $g^{-1}(V)$ is αg^*p -open in Y. Since f is strongly α - αg^*p -irresolute, $f^{-1}(g^{-1}(V))$ is α - open in X.

 \Rightarrow (g o f)⁻¹(V) is regular open in X and hence open in X.

Hence (g o f) is strongly $\alpha g^* p$ -irresolute.

(i) Let V be an αg^*p -open set in Z. Since g is αg^*p -irresolute, $g^{-1}(V)$ is αg^*p -open in Y. Since f is strongly αg^*p - irresolute, $f^{-1}(g^{-1}(V))$ is open in X and hence β -open in X.

 \Rightarrow (g o f)⁻¹(V) is β - open in X for every α g*p –open set V in Z.

Hence (g o f) is strongly β - α g*p -irresolute.

Theorem:3.17

If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$, then g o f: $X \rightarrow Z$ is

- (i) strongly α $\alpha g^* p$ -irresolute if f is regular irresolute and g is strongly α $\alpha g^* p$ -irresolute.
- (ii) strongly α α g*p -irresolute if f is α continuous and g is strongly α g*p -irresolute.
- (iii) strongly β $\alpha g^* p$ -irresolute if f is continuous and g is strongly $\alpha g^* p$ -irresolute.

Proof:Let V be a αg^*p -open set in Z. Since g is strongly α - αg^*p -irresolute, $g^{-1}(V)$ is α - open in Y. Since f is α - irresolute, $f^{-1}(g^{-1}(V))$ is α - open in X.

 \Rightarrow (g o f)⁻¹(V) is α - open in X.

Hence (g o f) is strongly α - α g*p -irresolute.

(i) Let V be an $\alpha g^* p$ -open set in Z. Since g is strongly $\alpha g^* p$ -irresolute, $g^{-1}(V)$ is open in Y. Since f is α - continuous, $f^{-1}(g^{-1}(V))$ is α -open in X.

 \Rightarrow (g o f)⁻¹(V) is α - open in X.

Hence (g o f) is strongly α - α g*p -irresolute.

(ii) Let V be an $\alpha g^* p$ -open set in Z. Since g is strongly $\alpha g^* p$ -irresolute, $g^{-1}(V)$ is open in Y.

Since	f	is	continuous	,	$f^{-1}(g^{-1}(V))$	is	open	in	Х.
-------	---	----	------------	---	---------------------	----	------	----	----

 \Rightarrow (g o f)⁻¹(V) is open in X and hence β -open in X.

Hence (g o f) is strongly β - α g*p -irresolute.

Theorem :3.18

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly α α g*p -irresolute.
- (ii) For each $x \in X$ and each αg^*p -open set V of Y containing f(x), there exists a α open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{1}(V) \subset Cl(Int (f^{1}(V)))$ for each $\alpha g^{*}p$ -open set V of Y.
- (iv) $f^{1}(F)$ is regular closed in X for every $\alpha g^{*}p$ -closed set F of Y.

Proof: Similar to that of Theorem 3.7

Theorem:3.19

The following are equivalent for a function f: $X \rightarrow Y$:

- (i) f is strongly β α g*p -irresolute.
- (ii) For each $x \in X$ and each αg^*p -open set V of Y containing f(x), there exists a β open set U in X containing x such that $f(U) \subset V$.
- (iii) $f^{1}(V) \subset Cl(Int(f^{1}(V)))$ for each $\alpha g^{*}p$ -open set V of Y.
- (iv) $f^{1}(F)$ is β -closed in X for every $\alpha g^{*}p$ -closed set F of Y.

Proof: Similar to that of Theorem 3.7.

Lemma: 3.20

If f: $X \rightarrow Y$ is strongly α - αg^*p -irresolute and A is a α - open subset of X, then f/A : $A \rightarrow Y$ is strongly α - αg^*p -irresolute.

Proof:

Let V be a αg^*p -open in Y. By hypothesis, $f^1(V)$ is α - open in X. But $(f/A)^{-1}(V) = A \cap f^1(V)$ is regular open in A. Hence f/A is strongly α - αg^*p -irresolute.

Theorem:3.21

Let f: $X \rightarrow Y$ and $\{A_{\lambda}: \lambda \in \Lambda\}$ be a cover of X by α - open set of (X,τ) . Then f is a strongly α - αg^*p -irresolute function if f/A_{λ} : $A_{\lambda} \rightarrow Y$ is strongly α - αg^*p -irresolute for each $\lambda \in \Lambda$.

Proof:Let V be any $\alpha g^* p$ -open set in Y. By hypothesis, $(f/A_{\lambda})^{-1}(V)$ is α - open in A_{λ} . Since A_{λ} is regular open in X, it follows that $(f/A_{\lambda})^{-1}(V)$ is $\alpha g^* p$ -open in X for each $\lambda \in \Lambda$.

$$\begin{split} f^{1}(V) = & X \cap f^{1}(V) \\ = & \cup \{A_{\lambda} \cap f^{1}(V): \lambda \in \Lambda\} \\ = & \cup \{(f/A_{\lambda})^{-1}(V): \lambda \in \Lambda\} \text{ is regular open in } X. \end{split}$$

Hence f is strongly α - α g*p -irresolute.

Lemma:3.22

If f: X \rightarrow Y is strongly β - α g*p -irresolute and A is a α -open subset of X, then f/A : A \rightarrow Y is strongly β - α g*p -irresolute.

Proof:Let V be a $\alpha g^* p$ -open in Y. By hypothesis, $f^1(V)$ is β -open in X. But $(f/A)^{-1}(V) = A \cap f^1(V)$ is β - open in A. Hence f/A is strongly β - $\alpha g^* p$ -irresolute.

Theorem:3.23

Let f: $X \rightarrow Y$ and $\{A_{\lambda}: \lambda \in \Lambda\}$ be a cover of X by β - open sets of (X,τ) . Then f is a strongly β - αg^*p -irresolute function if f/A_{λ} : $A_{\lambda} \rightarrow Y$ is strongly β - αg^*p -irresolute for each $\lambda \in \Lambda$.

Proof:Let V be any $\alpha g^* p$ -open set in Y. By hypothesis, $(f/A_{\lambda})^{-1}(V)$ is β - open in A_{λ} . Since A_{λ} is β - open in X, it follows that $(f/A_{\lambda})^{-1}(V)$ is β -open in X for each $\lambda \in \Lambda$.

 $f^{1}(V) = X \cap f^{1}(V)$

 $= \cup \{A_{\lambda} \cap f^{1}(V): \lambda \in \Lambda\}$

= $\cup \{ (f/A_{\lambda})^{-1}(V) : \lambda \in \Lambda \}$ is β - open in X. Hence f is strongly β - αg^*p -irresolute.

Theorem:3.24

If a function f: $X \rightarrow Y$ is strongly $\beta \cdot \alpha g^* p$ -irresolute, then $f^{-1}(B)$ is β -closed in X for any nowhere dense set B of Y.

Proof: Let B be any nowhere dense subset of Y. Then Y–B is regular in Y and hence αg^*p -open in Y. By hypothesis, f ¹(Y–B) is β -open in X. Hence f¹(B) is β -closed in X.

REFERENCES

[1] D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1), 1986, 24-32.

[2] M.Cladas and G.Navalagi, On weak forms of preopen and preclosed functions ,Archivum Mathematicum (BRNO),40, 2004, 119-128.

[3] J. Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Univ. Ser.A. Math., 16, 1995, 35-48.

[4] J.Dontchev, Contra continuous functions and strongly S-closed spaces, Int.Math. Math.Sci., 19(2), 1996, 303-310.

[5] J. Dontchev and T. Noiri, Contra semi-continuous functions, Math. Pannon., 10(2), 1999, 159-168.

[6] E.Ekici, Almost contra pre-continuous functions, Bull. Malaysian Math.Sci. Soc., 27:53:65,2004.

[7] Y. Gnanambal, On generalized preregular closed sets in topological spaces, Indian J. Pure. Appl. Math., 28(3), 1997, 351-360.

[8] S. Jafari and T. Noiri, Contra -continuous functions between topological spaces, Iran. Int. J. Sci., 2(2), 2001, 153-167.

[9] S. Jafari and T. Noiri, On contra pre-continuous functions, Bull. Malays. Math Sci. Soc., 25(2), 2002, 115-128.

[10] P. Jayakumar , K.Mariappa and S.Sekar , On generalized gp*-closed set in topological spaces, Int. Journal of Math.Analysis, 33(7), 2013, 1635-1645.

[11] N.Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70, 1963, 36-41.

[12] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T1/2 space, Mem. Fac. Sci. Kochi Univ. Ser.A. Math., 17, 1996, 33-42.

[13] A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On pre-continuous and weak pre-continuous mapings, Proc. Math.and Phys.Soc. Egypt, 53, 1982, 47-53.

[14] O.Njastad, On some classes of nearly open sets, Pacific J.Math., 15, 1965, 961-970.

[15] T. Noiri, Super-continuity and some strong forms of continuity, Indian J. Pure Appl. Math.15, 1984, 241-250

[16] P.G.Patil, T.D.Rayanagoudar and Mahesh K.Bhat, On some new functions of g*p-continuity, Int.J.Contemp.Math.Sciences, 6, 2011, 991-998.

[17] J.Rajakumari and C.Sekar, On $\checkmark g^*p$ -Continuous and $\checkmark g^*p$ -irresolute Maps in Topological Spaces, International Journal of Mathematical Archive, 7(8), 2016, 1-8.

[18].J.Rajakumari and Sekar, contra albha generalized star pre-continuous function in topological spaces, journal og global Research in mathematical Archives, volume 3, No.8, 2016.

[19] C.Sekar and J.Rajakumari, A new notion of generalized closed sets in Topological Spaces, International Journal of Mathematics Trends and Technology, 36(2), 2016, 124-129.

[20] S.Sekar and P.Jayakumar, Contra gp*-continuous Functions, IOSR Journal of Mathematics, 10(4), 2014, 55 - 60.

[21] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama. Math., 3, 1968, 63-73.

[22] M.Stone Application of the theory of Boolean rings to general topology .Trans.Amer.Math.Soc., 41, 1937, 374-381.

- [23] M.K.R.S. Veera kumar, g*-preclosed sets, Indian J.Math., 44(2), 2002, 51-60.
- [24] M.K.R.S. Veera kumar, Pre-semi closed sets, Acta ciencia Indica (Maths) Meerut, XXVIII(M)(1), 2002, 165-181.
- [25] M.K.R.S. Veerakumar, Contra pre-semicontinuous functions, Bull. Malays. Math. Sci. Soc., (2)28(1), 2005, 67-71.