
Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 314

Improving data transfer rate of Hadoop MapReduce

framework using data blocks for massive data

1Sujit Roy, 2Md. Humaun Kabir, 3Ripan Roy, 4Md. Zahidul Alam

1Lecturer, Department of Computer Science and Engineering, 2Lecturer, Department of Computer Science and

Engineering, 3Lecturer, Department of Mathematics, 4Lecturer

Bangamata Sheikh Fojilatunnesa Mujib Science & Technology University, Jamalpur, Bangladesh

Abstract - In this research paper, a new technique has been proposed to process the massive data in Hadoop MapReduce

framework to improve data rate by using synchronous data transmission, sending block of data from source to

destination. The proposed method shows how to divide the data blocks in an efficient manner for achieving satisfactory

data transfer rate by adjusting the split size or using appropriate size of staffs. In traditional system, normally data

transfer is accomplished through a small block of 8 bit while in the proposed system data transfer is performed through

a block size of 80 byte to 132 byte. Moreover, the traditional system needs to add 3 extra bits with a block of data during

data transmission while the proposed system attaches additional 32 byte with a block of data. For this reason, our

proposed system takes more time to transfer small size data but it transfer big size data very faster than the current

systems. From the simulation results, it is observed that the proposed model is more efficient and provides satisfactory

performance for the big size data.

keywords - MapReduce, Massive Data, Incremental Processing, Hadoop, Distributed Computing, HDFS

I. INTRODUCTION

Data processing is the major challenge in big data because it contains different types of data, and computations cannot be

accomplished by the estimated database and data mining techniques. An investigation study states that big data contents are

produced increasingly day by day. IBM states that 2.5 billion gigabytes of data are produced in a single day. In 2012, in a single

dataset, the size of the data likely to rise from few terabytes (TB) to many petabytes (PB) and about 90% of the whole data in the

world today is produced in the last two years only. In this era of data science, in its entirety, the term “data” is further redefined,

which is popularly known as “Big Data” today. The concept of Big Data is relatively new which has more than a few characteristics

and has a large scope of further research. The Big Data is termed to have five concerns are volume of the data, velocity of the

data, variety of the data, veracity of the data, and the value of the data.

Hadoop is an open source framework which provides a consistent storing of large data collections over multiple service servers

and parallel processing of data analysis. MapReduce is a programming model and an accompanying employment for processing

and generating big data sets with a parallel distributed algorithm on a Hadoop cluster. The MapReduce framework was announced

by Google in 2004 [7]. Hadoop MapReduce is a software framework built on top of Hadoop used for processing large data

collections in parallel on Hadoop clusters [1]. The algorithm of MapReduce is based on a common map and reduce programming

model widely used in functional programming. It is particularly suitable for parallel processing as each map or reduce task operates

independent of one another. MapReduce jobs are mostly I/O bound as 70% of a single job is found to be I/O-intensive tasks [2].

A characteristic MapReduce job is divided into three sequential I/O-bound phases:

1. Map phase: Locations of input data blocks distributed over multiple data nodes are retrieved via NameNode. Blocks are

loaded into memory from local disk and each map task processes corresponding blocks. Intermediate results from each map task

are materialized in map output buffers.

2. Shuffle phase: Once a map task is completed, spilled contents are merged and shuffled across the network to corresponding

reduce tasks.

3. Reduce phase: Each reduce task process received key groups. Similar to the map phase, reduce inputs are temporarily stored

in reducer output buffers and periodically spilled to disks.

II. HADOOP FRAMEWORK

Hadoop is an open source platform which is used effectively to handle the big data applications. The two core concepts of the

Hadoop are Map reduce and Hadoop distributed file system (HDFS). HDFS is the storage machine and map reduce is the

programming language. Results are manufactured faster than other Traditional database operations. Pig and Hive are the two

languages which help us to program the MapReduce framework within short period of time . Hadoop contains the distributed file

system in order to handle the large range of data. Major features of Hadoop are reliability, data locality, cost effectiveness, efficient

computation, high data locality and faster data processing. Reliable, stable and consistent data is generated, which means data

contents will be the same all the time after processing set of inputs. Hadoop has several different vendors: Cloudera, Horton works,

MapR, Amazon Elastic MapReduce, IBM Info sphere big Insights are some of them.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org
https://en.wikipedia.org/wiki/Programming_model
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Cluster_(computing)

Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 315

Figure 1: Architecture of Hadoop.

III. HADOOP DISTRIBUTED FILE SYSTEM

HDFS was designed in the project NUTCH. Input data are split into different portions and stored in HDFS. The default portion

size is 64MB. HDFS has blocked oriented architecture. Each block has fixed size and is stored in the Hadoop cluster. These

different blocks are called as data node and they contains the actual data. The data nodes are stored in different machines at

different clusters. Since the data is processed in the same cluster where it is stored, it avoids the problems related to transferring

of data from one place to another. Thus the HDFS provide reliable and fast access to the stored data. Name node stores the

metadata for the file system across each Hadoop cluster. Name node is stored in the main memory, so it allows fast random access.

The data stored in the name node are persistent and due to this failure will cause the permanent loss of the data. Because its contain

all the links to the data nodes. To avoid the loss of information, the secondary name node is maintained. It contains the image of

the name node and the edit logs. When failure comes, based on these log details the data can be retrieved. The secondary name

node cannot be replaced directly instead of the actual name node [4] [7].

IV. MAP REDUCE LOGICAL VIEW

The Map Reduce framework helps easily to write applications which process large amounts of data, up to several Terabytes, in
parallel on large clusters, consisting of hundreds of nodes made using commodity hardware, with highly reliable and fault-
tolerant manner. The key idea behind MapReduce is mapping the data set into a collection of <key, value> pairs, and then

reducing all the pairs with the same key. Map takes one pair of data with a type in one data domain, and returns a list of pairs in
a different domain:

Map(k1, v1) → List(k2, v2)

The Map function is applied in parallel to every pair (keyed by ) in the input dataset. This produces a list of pairs (keyed by )
for each call. After that, the MapReduce framework collects all pairs with the same key () from all lists and groups them
together, creating one group for each key. The Reduce function is then applied in parallel to each group, which in turn produces
a collection of values in the same domain:

Reduce(k2, List(v2)) → List(v3)
Each Reduce call typically produces either one value v3 or an empty return, though one call is allowed to return more than one
value. A MapReduce task separates the input data into several independent blocks each of which are then processed by the map
process in parallel as shown in Figure 2. The output of the Map task is then passed to the shuffle task. The Reducer stage has three
phrases: shuffle phase, sort phase, and the reduce phase. In the Shuffle phase, the output from the Mappers is given to the Reducer
after sorting them. The MapReduce framework then gathers the portion of the output from all the mappers using HTTP protocol.
Through the sorting phase, the MapReduce programming framework then groups the output that have the same input by the
assigned key value. Both the shuffle phase and sort phase happens parallelly. Several output pieces from the mapper program are
fetched simultaneously as they get merged. It is often used to track how intermediate keys are grouped together and be used
additionally to simulate secondary sort on values. The final phase of the MapReduce program is the reduce phase. The reduce
phase uses results from shuffler as input and run them across several reducers at the same time. The reduce tasks are then
consolidated into the final result.
The advantages of MapReduce programming are scalability, cost-effective solution, flexibility in environment, fast execution,
security and authentication, parallel processing, availability and resilient nature. The programming processing divides the tasks in
a manner that allows the execution of the independent task in parallel. Hence this parallel processing makes it easier for the
processes to take on each of the tasks which help to run the program in much less time. Map reduce has a large capability when it
comes to large data processing compared to traditional RDBMS systems.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 316

Figure 2: Block diagram of MapReduce data flow.

V. RELATED WORK

Hadoop MapReduce is an open-sourced framework that supports MapReduce programming model introduced by Google [2].

The MapReduce model consists of two primitive functions: Map() and Reduce(). Users can define Map() and Reduce() functions.

Each processing job in Hadoop is broken down to as many Map tasks as input data blocks and one or more Reduce tasks.

 Hadoop MapReduce also utilizes HDFS as an underlying storage layer [11]. HDFS is a block-structured file system that

supports fault tolerance by data partitioning and block replication, managed by a single or two master nodes. Some approaches

for improving the I/O performance in MapReduce-based programs have been proposed. Readers are referred to a recent survey

for MapReduce and its improvements [3]. In this survey paper [18], we are providing a state of the art overview of Cloud-centric

Big Data placement together with the data storage methodologies. It is an attempt to highlight the actual correlation between these

two in terms of better supporting Big Data management. Clustering algorithms have emerged as an alternative powerful meta-

learning tool to analyze accurately the massive volume of data generated by modern applications. In particular [22], their main

goal is to categorize data into clusters such that objects are grouped in the same cluster when they are similar according to specific

metrics.

Hive [6] is an open-source project, which aims at providing a data warehouse solution on the Hadoop framework. It supports

ad hoc queries with an SQL-like query language. Hive evaluates its SQL-like query by compiling the query into a directed acyclic

graph that is composed of multiple MapReduce jobs. Hive also maintains a system catalog that provides schema information and

data statistics, similar to other relational database systems. HBase [7] is an open-source Java implementation of Google’s Big

table [8]. HBase is a wide-column store, which maps two arbitrary string values (row key and column key) and timestamp into an

associated arbitrary byte array, working on HDFS. It features data compression, the use of bloom filter for checking the existence

of data, and a log-structured storage. HBase is not a relational database, rather known to be a sparse, distributed multisorted map

which works better for treating sparse data such as web addresses.

Replica placement policy for HDFS is subject of several works (Dai, 2016), (Mansouri, 2016), (Park, 2016). The distribution

of replica across cluster nodes allows to improve the performance of HDFS by balancing the simultaneous access to a data. The

full storage size limits the usage of replica in suggested replica placement strategies. But all of proposed policies show better

performance in case of reading of a data in compare with standard Hadoop replica allocation. The performance of each data node

in a heterogeneous Hadoop cluster differs, and the number of slots that can be numbered to simultaneously execute tasks differs.

For this reason, Hadoop is susceptible to replica placement problems and data replication problems [15].

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 317

VI. MODELING OF HADOOP FRAMEWORK

The Hadoop framework is used to process the big data applications. It joins multiple datasets together. There are different step

in the modeling of the Hadoop framework. At first, the contents are stored into the HDFS and then we can process the data using

the mapreduce concept. HDFS splits the contents into different chunks and save in different data nodes of the Hadoop cluster.

After that mapreduce algorithm will map the contents from different data nodes as the key value pair and finally reducer will

process the contents to get the meaningful data. The block diagram of the Hadoop framework is shown in Figure 3.

Figure 3: MapReduce accomplishment flow.

VII. PROPOSED METHODS

A. Proposed Data Transmission Methodology

In this proposed method, the data blocks are divided to get the maximum data transmission efficiency. The target data are

stored in a primary storage device and then transmitted the data, the format of a data container shown in Figure 4 will take 80-132

characters in size. Trailer and header are also connected to the data field. Both the trailer and header contain an 8 bits flag and

control field. The data is divided into blocks (packets or frames) and transmit one block each time. There is block interval between

two blocks. Every block data contain 2 bytes header information at the front and 2 bytes trailer information at the end.

Figure 4: The layout of data transmission block.

B. Algorithm of Proposed Approach

Step1: The input reader reads data from stable storage (typically a distributed file system) and generates key/ value pairs.

Step2: Split the input file (0………………………..N)

Step3: The Map () is used for the split file (split 0 ………………..split N)

Step4: Then the split files are shuffling according to their file category.

Step5: Apply Reduce () to optimize it. The Reduce can iterate through the values that are associated with that key and produce

zero or more outputs.

Step6: Analyze the files efficiency by using the formula.

Trailer Real Data Header

1 Byte

1 Byte

Data Block Size 80 to 132 Byte

1 Byte

1 Byte

Flag

Control Fields

Data Fields

Control Fields

Flag

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 318

Data Transmission Efficiency =
Real Data

Total Data
 × 100%

Here, Total Data = Real Data + Overhead Data

Step7: Finally, we can analyze the data transfer rate by using the formula

Data Transfer Rate(Kbps) =
Total File Size (MB)

Total Transfer Time (Sec)

C. Mathematical Analysis

Now we assume the Throughput of the data file.

Throughput is the ratio of the file size and time.

Data Transfer Rate (N) =
∑ File Sizei

N
i=0

∑ Timei
N
i=0

 Mb/ Sec [File Size (MB)/Transfer Speed (kbps) = Time(s)]

Average IO Rate (N) =
∑ Ratei

N
i−0

N

To analyze the efficiency by using the formula

Data Efficiency (µ) =
Rd

Td
 × 100%

Total Data, Td = Rd + Od

Overhead Data, Od = |
Real Data

Block size
| × 32

Here, Td = Total Data, Rd = Real Data, Od = Overhead Data

Data Transfer Speed (kbps) =
File Size (MB)

Time (s)

VIII. RESULT AND DISCUSSION

In this research, various sizes of data are used to process in Traditional and proposed methods to get a comparison between

the systems. The outcomes of the proposed system showed a better data transfer average efficiency than the Traditional methods.

When the size of the primary storage range is 5 to 60 MB then the Traditional method carry out the better data transfer average

efficiency than the proposed method which is shown in the following Table 1. In the same table, if the size of the file range is 65

to 100 MB, then the data transfer average efficiency of Traditional method is approximately equivalent to proposed method. The

data transfer average efficiency of proposed method is greater than the Traditional method for 100 MB above the file size. We

can find the data rate of Traditional and proposed methods to get a comparison between the systems from the table 2. The outcomes

of the proposed system showed a better data rate than the Traditional methods for immense file size. The Traditional method

average data rate o.72 bpns and proposed method average data rate 0.97bpns.

Primary Storage

Space (MB)

Data Transfer Average Efficiency (%)

Traditional Method Proposed Method

5 to 60 69.3335 46.2833

65 to 100 71.8255 71.7375

100 to above 72.7152 94.8848

Table 1: Different Primary Storage file size wise average efficiency.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 319

Figure 5: Different Primary Storage file size wise average efficiency.

File Size

Traditional Method Proposed Method

Block Total Time (sec) Bandwidth (bpns) Block Total Time (ns) Bandwidth (bpns)

1 Byte 1 11 0.727272727 1 40 0.20000

100 Byte 100 1100.099 0.727207279 1 832 0.961538

500 Byte 500 5500.499 0.72720675 4 4128.03 0.968985

1 KB 1024 11265.023 0.727206682 8 8448.07 0.969689

100 KB 102400 1126502.399 0.727206618 776 844039.8 0.970578

500 KB 512000 5632511.999 0.727206618 3879 4220167 0.970578

1 MB 1048576 11535384.58 0.727206618 7944 8642895 0.970578

100 MB 104857600 1153538458 0.727206618 794376 8.64E+08 0.970579

500 MB 524288000 5767692288 0.727206618 3971879 4.32E+09 0.970579

1 GB 1073741824 11812233806 0.727206618 8134408 8.85E+09 0.970579

100 GB 1.07374E+11 1.18122E+12 0.727206618 8.13E+08 8.85E+11 0.970579

500 GB 5.36871E+11 5.90612E+12 0.727206618 4.07E+09 4.43E+12 0.970579

1 TB 1.09951E+12 1.20957E+13 0.727206618 8.33E+09 9.06E+12 0.970579

100 TB 1.09951E+14 1.20957E+15 0.727206618 8.33E+11 9.06E+14 0.970579

500 TB 5.49756E+14 6.04786E+15 0.727206618 4.16E+12 4.53E+15 0.970579

Table 2: Comparison of Data Transfer Rate between Traditional and Proposed Method.

IX. CONCLUSION AND FUTURE WORK

Map Reduce is an effective programming model for significant data-intensive multiplying applications. Hadoop, an open

source implementation of Map Reduce, has been widely used. The communication overhead from the big data sets’ transmission

affects the performance of Hadoop greatly. Hadoop is comprehensively used for considered decision making in the big data

applications. It has many application areas like sophisticated data mining, pattern recognition, content optimizing, marketing

analysis, network analysis, large data transformations, text processing etc. Hadoop framework can be used to make informed

decisions in logistic freight in order to perform the freight audit.

This study focuses on to measure the better data efficiency of periodic tasks that run on HADOOP platforms. It also studied

how to divide the data blocks efficiently to distribute and manage the data. Data block distribution according to the proposed

architecture in HADOOP achieved around 22% more efficiency than the other Traditional systems.

Next we plan to work on Bandwidth in HADOOP clustering. As the HADOOP contains different categories of file extension,

so it would be possible to increase data transmission rate by grouping files before execution. Data block distribution according to

the proposed method in HADOOP achieved the data transfer rate better than the other traditional methods.

0

10

20

30

40

50

60

70

80

90

100

5 to 60 MB 65 to 100 MB 105 to above

A
v
e
r
a
g
e
 D

a
ta

 E
ff

ic
e
n

c
y
 %

Primary Storage Space(MB)

Traditional Method

Proposed Method

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org

Publication Since 2012 | ISSN: 2321-9939 | ©IJEDR 2020 Year 2020, Volume 8, Issue 1

IJEDR2001060 International Journal of Engineering Development and Research (www.ijedr.org) 320

REFERENCES

[1] Yongwei Wu; Feng Ye; Kang Chen; Weimin Zheng, "Modeling of Distributed File Systems for Practical Performance

Analysis," IEEE Transactions on Parallel and Distributed Systems, vol.25, no.1, pp.156- 166, Jan.2014,

doi:10.1109/TPDS.2013.19.

[2] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters,” Communications of the ACM,

vol. 51, no. 1, pp. 107–113, 2008.

[3] K. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel data processing with MapReduce: a survey,” ACM

SIGMOD Record, vol. 40, no. 4, pp. 11–20, 2012.

[4] Y. He, R. Lee, Y. Huai et al., “RCFile: a fast and space efficient data placement structure in mapreduce-based warehouse

systems,” in Proceedings of 27th IEEE ICDE Conference, pp. 1199–1208, Hannover, Germany, April 2011.

[5] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian, “A comparison of join algorithms for log

processing in MapReduce,” in Proceedings of ACM SIGMOD Conference, pp. 975–986, Indianapolis, IN, USA, June

2010.

[6] A. Thusoo, J. S. Sarma, N. Jain et al., “Hive: a warehousing solution over a map-reduce framework,” Proceedings of

VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[7] L. George, HBase: the Definitive Guide: Random Access to your Planet-Size Data, O’Reilly Media Inc., Sebastopol,

CA, USA, 2011.

[8] F. Chang, J. Dean, S. Ghemawat et al., “Bigtable: a distributed storage system for structured data,” ACM Transactions

on Computer Systems (TOCS), vol. 26, no. 2, pp. 1–26, 2008.

[9] A. Pavlo, “A comparison of approaches to large-scale data analysis,” in Proceedings of SIGMOD Conference, pp. 165–

178, Providence, RI, USA, June 2009.

[10] M. Zaharia, M. J. Franklin, A. Ghodsi et al., “Apache Spark: a unified engine for big data processing,” Communications

of ACM (CACM), vol. 59, no. 11, pp. 56–65, 2016.

[11] K. Shvachko, “The Hadoop distributed file system,” in Proceedings of IEEE Symposium on Mass Storage Systems and

Technologies (MSST), pp. 1–10, Lake Tahoe, NV, USA, May 2010.

[12] Y. Huai, X. Zhang, A. Chauhan et al., “Major technical advancements in Apache Hive,” in Proceedings of ACM

SIGMOD Conference, pp. 1235–1246, Snowbird, UT, USA, June 2014.

[13] W. Ligon, III and R. Ross, “Implementation and Performance of a Parallel File System for High performance Distributed

Applications,” Proc, IEEE Fifty Int’l Symp. High Performance Distributed Computing,pp471-480, 1996.

[14] Zhu, Nan; Liu, Xue; Liu, Jie; Hua, Yu, "Towards a cost-efficient MapReduce: Mitigating power peaks for Hadoop

clusters," Tsinghua Science and Technology, vol.19, no.1, pp.24,32, Feb. 2014 doi: 10.1109/TST.2014.6733205.

[15] Park, D. K. An efficient Hadoop data replication method design for heterogeneous clusters. In Proceedings of the 31st

Annual ACM Symposium on Applied Computing (pp. 2182-2184). ACM, 2016.

[16] Sohangir S, Wang D, Pomeranets A, Khoshgoftaar TM. Big data: deep learning for financial sentiment analysis. J Big

Data. 2018; 5(1):3. doi: 10.1186/s40537-017-0111-6.

[17] Apache Hadoop. http://hadoop.apache.org (2018). Accessed 27 June 2019.

[18] Mazumdar S, Seybold D, Kritikos K, Verginadis Y. A survey on data storage and placement methodologies for cloud-

big data ecosystem.J Big Data. 2019; 6(1):15. doi:10.1186/s40537-019-0178-3.

[19] Oussous A, Benjelloun FZ, Lahcen AA, Belfkih S. Big data technologies: a survey. J King Saud Univ Comput Inf Sci.

2017;30 (4):431–48.

[20] Fang H et al. A survey of big data research. In: IEEE network; 2015. p. 6–9.

[21] Fahad A, et al. A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans Emerg Top

Comput. 2014;2(3):267–79.

file:///E:/Planet%20Publication/IJEDR/Volume%203/Vol%203%20Issue%202/Published_Paper_V3_I2/www.ijedr.org
http://hadoop.apache.org/

	I. Introduction
	II. Hadoop Framework
	III. Hadoop Distributed File System
	IV. Map Reduce Logical View
	V. Related Work
	VI. Modeling of Hadoop Framework
	VII. Proposed Methods
	VIII. Result and Discussion
	IX. Conclusion and Future Work
	References

