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Abstract - In this research paper, a new technique has been proposed to process the massive data in Hadoop MapReduce 

framework to improve data rate by using synchronous data transmission, sending block of data from source to 

destination. The proposed method shows how to divide the data blocks in an efficient manner for achieving satisfactory 

data transfer rate by adjusting the split size or using appropriate size of staffs. In traditional system, normally data 

transfer is accomplished through a small block of 8 bit while in the proposed system data transfer is performed through 

a block size of 80 byte to 132 byte. Moreover, the traditional system needs to add 3 extra bits with a block of data during 

data transmission while the proposed system attaches additional 32 byte with a block of data. For this reason, our 

proposed system takes more time to transfer small size data but it transfer big size data very faster than the current 

systems. From the simulation results, it is observed that the proposed model is more efficient and provides satisfactory 

performance for the big size data. 
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_____________________________________________________________________________________________________ 

I. INTRODUCTION 

Data processing is the major challenge in big data because it contains different types of data, and computations cannot be 

accomplished by the estimated database and data mining techniques. An investigation study states that big data contents are 

produced increasingly day by day. IBM states that 2.5 billion gigabytes of data are produced in a single day. In 2012, in a single 

dataset, the size of the data likely to rise from few terabytes (TB) to many petabytes (PB) and about 90% of the whole data in the 

world today is produced in the last two years only.  In this era of data science, in its entirety, the term “data” is further redefined, 

which is popularly known as “Big Data” today. The concept of Big Data is relatively new which has more than a few characteristics 

and has a large scope of further research. The Big Data is termed to have five concerns are volume of the data, velocity of the 

data, variety of the data, veracity of the data, and the value of the data. 

Hadoop is an open source framework which provides a consistent storing of large data collections over multiple service servers 

and parallel processing of data analysis. MapReduce is a programming model and an accompanying employment for processing 

and generating big data sets with a parallel distributed algorithm on a Hadoop cluster. The MapReduce framework was announced 

by Google in 2004 [7]. Hadoop MapReduce is a software framework built on top of Hadoop used for processing large data 

collections in parallel on Hadoop clusters [1]. The algorithm of MapReduce is based on a common map and reduce programming 

model widely used in functional programming. It is particularly suitable for parallel processing as each map or reduce task operates 

independent of one another. MapReduce jobs are mostly I/O bound as 70% of a single job is found to be I/O-intensive tasks [2]. 

A characteristic MapReduce job is divided into three sequential I/O-bound phases:  

1. Map phase: Locations of input data blocks distributed over multiple data nodes are retrieved via NameNode. Blocks are 

loaded into memory from local disk and each map task processes corresponding blocks. Intermediate results from each map task 

are materialized in map output buffers.  

2. Shuffle phase: Once a map task is completed, spilled contents are merged and shuffled across the network to corresponding 

reduce tasks.  

3. Reduce phase: Each reduce task process received key groups. Similar to the map phase, reduce inputs are temporarily stored 

in reducer output buffers and periodically spilled to disks. 

II. HADOOP FRAMEWORK 

Hadoop is an open source platform which is used effectively to handle the big data applications. The two core concepts of the 

Hadoop are Map reduce and Hadoop distributed file system (HDFS). HDFS is the storage machine and map reduce is the 

programming language. Results are manufactured faster than other Traditional database operations. Pig and Hive are the two 

languages which help us to program the MapReduce framework within short period of time . Hadoop contains the distributed file 

system in order to handle the large range of data. Major features of Hadoop are reliability, data locality, cost effectiveness, efficient 

computation, high data locality and faster data processing. Reliable, stable and consistent data is generated, which means data 

contents will be the same all the time after processing set of inputs. Hadoop has several different vendors: Cloudera, Horton works, 

MapR, Amazon Elastic MapReduce, IBM Info sphere big Insights are some of them. 
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Figure 1: Architecture of Hadoop. 

III. HADOOP DISTRIBUTED FILE SYSTEM 

HDFS was designed in the project NUTCH. Input data are split into different portions and stored in HDFS. The default portion 

size is 64MB. HDFS has blocked oriented architecture. Each block has fixed size and is stored in the Hadoop cluster. These 

different blocks are called as data node and they contains the actual data. The data nodes are stored in different machines at 

different clusters. Since the data is processed in the same cluster where it is stored, it avoids the problems related to transferring 

of data from one place to another. Thus the HDFS provide reliable and fast access to the stored data. Name node stores the 

metadata for the file system across each Hadoop cluster. Name node is stored in the main memory, so it allows fast random access. 

The data stored in the name node are persistent and due to this failure will cause the permanent loss of the data. Because its contain 

all the links to the data nodes. To avoid the loss of information, the secondary name node is maintained. It contains the image of 

the name node and the edit logs. When failure comes, based on these log details the data can be retrieved. The secondary name 

node cannot be replaced directly instead of the actual name node [4] [7]. 

IV. MAP REDUCE LOGICAL VIEW 

The Map Reduce framework helps easily to write applications which process large amounts of data, up to several Terabytes, in 
parallel on large clusters, consisting of hundreds of nodes made using commodity hardware, with highly reliable and fault-
tolerant manner. The key idea behind MapReduce is mapping the data set into a collection of <key, value> pairs, and then 

reducing all the pairs with the same key. Map takes one pair of data with a type in one data domain, and returns a list of pairs in 
a different domain: 

Map(k1, v1) → List(k2, v2) 

The Map function is applied in parallel to every pair (keyed by ) in the input dataset. This produces a list of pairs (keyed by ) 
for each call. After that, the MapReduce framework collects all pairs with the same key () from all lists and groups them 
together, creating one group for each key. The Reduce function is then applied in parallel to each group, which in turn produces 
a collection of values in the same domain:  

Reduce(k2, List(v2)) → List(v3) 
Each Reduce call typically produces either one value v3 or an empty return, though one call is allowed to return more than one 
value. A MapReduce task separates the input data into several independent blocks each of which are then processed by the map 
process in parallel as shown in Figure 2. The output of the Map task is then passed to the shuffle task. The Reducer stage has three 
phrases: shuffle phase, sort phase, and the reduce phase. In the Shuffle phase, the output from the Mappers is given to the Reducer 
after sorting them. The MapReduce framework then gathers the portion of the output from all the mappers using HTTP protocol. 
Through the sorting phase, the MapReduce programming framework then groups the output that have the same input by the 
assigned key value. Both the shuffle phase and sort phase happens parallelly. Several output pieces from the mapper program are 
fetched simultaneously as they get merged. It is often used to track how intermediate keys are grouped together and be used 
additionally to simulate secondary sort on values. The final phase of the MapReduce program is the reduce phase. The reduce 
phase uses results from shuffler as input and run them across several reducers at the same time. The reduce tasks are then 
consolidated into the final result. 
The advantages of MapReduce programming are scalability, cost-effective solution, flexibility in environment, fast execution, 
security and authentication, parallel processing, availability and resilient nature. The programming processing divides the tasks in 
a manner that allows the execution of the independent task in parallel. Hence this parallel processing makes it easier for the 
processes to take on each of the tasks which help to run the program in much less time. Map reduce has a large capability when it 
comes to large data processing compared to traditional RDBMS systems. 
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Figure 2: Block diagram of MapReduce data flow. 

V. RELATED WORK 

Hadoop MapReduce is an open-sourced framework that supports MapReduce programming model introduced by Google [2]. 

The MapReduce model consists of two primitive functions: Map() and  Reduce(). Users can define Map() and Reduce() functions. 

Each processing job in Hadoop is broken down to as many Map tasks as input data blocks and one or more Reduce tasks. 

 Hadoop MapReduce also utilizes HDFS as an underlying storage layer [11]. HDFS is a block-structured file system that 

supports fault tolerance by data partitioning and block replication, managed by a single or two master nodes. Some approaches 

for improving the I/O performance in MapReduce-based programs have been proposed. Readers are referred to a recent survey 

for MapReduce and its improvements [3]. In this survey paper [18], we are providing a state of the art overview of Cloud-centric 

Big Data placement together with the data storage methodologies. It is an attempt to highlight the actual correlation between these 

two in terms of better supporting Big Data management. Clustering algorithms have emerged as an alternative powerful meta-

learning tool to analyze accurately the massive volume of data generated by modern applications. In particular [22], their main 

goal is to categorize data into clusters such that objects are grouped in the same cluster when they are similar according to specific 

metrics. 

Hive [6] is an open-source project, which aims at providing a data warehouse solution on the Hadoop framework. It supports 

ad hoc queries with an SQL-like query language. Hive evaluates its SQL-like query by compiling the query into a directed acyclic 

graph that is composed of multiple MapReduce jobs. Hive also maintains a system catalog that provides schema information and 

data statistics, similar to other relational database systems. HBase [7] is an open-source Java implementation of Google’s Big 

table [8]. HBase is a wide-column store, which maps two arbitrary string values (row key and column key) and timestamp into an 

associated arbitrary byte array, working on HDFS. It features data compression, the use of bloom filter for checking the existence 

of data, and a log-structured storage. HBase is not a relational database, rather known to be a sparse, distributed multisorted map 

which works better for treating sparse data such as web addresses. 

Replica placement policy for HDFS is subject of several works (Dai, 2016), (Mansouri, 2016), (Park, 2016). The distribution 

of replica across cluster nodes allows to improve the performance of HDFS by balancing the simultaneous access to a data. The 

full storage size limits the usage of replica in suggested replica placement strategies. But all of proposed policies show better 

performance in case of reading of a data in compare with standard Hadoop replica allocation. The performance of each data node 

in a heterogeneous Hadoop cluster differs, and the number of slots that can be numbered to simultaneously execute tasks differs. 

For this reason, Hadoop is susceptible to replica placement problems and data replication problems [15]. 
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VI. MODELING OF HADOOP FRAMEWORK 

The Hadoop framework is used to process the big data applications. It joins multiple datasets together. There are different step 

in the modeling of the Hadoop framework. At first, the contents are stored into the HDFS and then we can process the data using 

the mapreduce concept. HDFS splits the contents into different chunks and save in different data nodes of the Hadoop cluster. 

After that mapreduce algorithm will map the contents from different data nodes as the key value pair and finally reducer will 

process the contents to get the meaningful data. The block diagram of the Hadoop framework is shown in Figure 3. 

 

Figure 3: MapReduce accomplishment flow. 

VII. PROPOSED METHODS 

A. Proposed Data Transmission Methodology  

In this proposed method, the data blocks are divided to get the maximum data transmission efficiency. The target data are 

stored in a primary storage device and then transmitted the data, the format of a data container shown in Figure 4 will take 80-132 

characters in size. Trailer and header are also connected to the data field. Both the trailer and header contain an 8 bits flag and 

control field. The data is divided into blocks (packets or frames) and transmit one block each time. There is block interval between 

two blocks. Every block data contain 2 bytes header information at the front and 2 bytes trailer information at the end. 

 

 

 

 

 

 

 

Figure 4: The layout of data transmission block. 

 

B. Algorithm of Proposed Approach 

Step1: The input reader reads data from stable storage (typically a distributed file system) and generates key/ value pairs.  

Step2: Split the input file (0………………………..N) 

Step3: The Map () is used for the split file (split 0 ………………..split N) 

Step4: Then the split files are shuffling according to their file category. 

Step5: Apply Reduce () to optimize it. The Reduce can iterate through the values that are associated with that key and produce 

zero or more outputs. 

Step6: Analyze the files efficiency by using the formula. 
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Data Transmission Efficiency = 
Real Data

Total Data
 × 100% 

Here, Total Data = Real Data + Overhead Data 

Step7: Finally, we can analyze the data transfer rate by using the formula 

Data Transfer Rate(Kbps) =
Total File Size (MB)

Total Transfer Time (Sec)
 

 

C. Mathematical Analysis 

Now we assume the Throughput of the data file. 

Throughput is the ratio of the file size and time. 

Data Transfer Rate (N)  =
∑ File Sizei

N
i=0

∑ Timei
N
i=0

 Mb/ Sec [ File Size (MB)/Transfer Speed (kbps) = Time(s)] 

Average IO Rate (N)  =  
∑ Ratei

N
i−0

N
 

To analyze the efficiency by using the formula 

Data Efficiency (µ)  =  
Rd

Td
 × 100% 

Total Data, Td =  Rd + Od 

Overhead Data, Od =  |
Real Data

Block size
| × 32 

Here, Td = Total Data, Rd = Real Data, Od = Overhead Data 

Data Transfer Speed (kbps)  =  
File Size (MB)

Time (s)
 

VIII. RESULT AND DISCUSSION 

In this research, various sizes of data are used to process in Traditional and proposed methods to get a comparison between 

the systems. The outcomes of the proposed system showed a better data transfer average efficiency than the Traditional methods. 

When the size of the primary storage range is 5 to 60 MB then the Traditional method carry out the better data transfer average 

efficiency than the proposed method which is shown in the following Table 1. In the same table, if the size of the file range is 65 

to 100 MB, then the data transfer average efficiency of Traditional method is approximately equivalent to proposed method. The 

data transfer average efficiency of proposed method is greater than the Traditional method for 100 MB above the file size. We 

can find the data rate of Traditional and proposed methods to get a comparison between the systems from the table 2. The outcomes 

of the proposed system showed a better data rate than the Traditional methods for immense file size. The Traditional method 

average data rate o.72 bpns and proposed method average data rate 0.97bpns.  

Primary Storage 

Space (MB) 

Data Transfer Average Efficiency (%) 

Traditional Method Proposed Method 

5 to 60 69.3335 46.2833 

65 to 100 71.8255 71.7375 

100 to above 72.7152 94.8848 

Table 1: Different Primary Storage file size wise average efficiency. 
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Figure 5: Different Primary Storage file size wise average efficiency. 

 

File Size 

Traditional Method Proposed Method 

Block Total Time (sec) Bandwidth (bpns) Block Total Time (ns) Bandwidth (bpns) 

1 Byte 1 11 0.727272727 1 40 0.20000 

100 Byte 100 1100.099 0.727207279 1 832 0.961538 

500 Byte 500 5500.499 0.72720675 4 4128.03 0.968985 

1 KB 1024 11265.023 0.727206682 8 8448.07 0.969689 

100 KB 102400 1126502.399 0.727206618 776 844039.8 0.970578 

500 KB 512000 5632511.999 0.727206618 3879 4220167 0.970578 

1 MB 1048576 11535384.58 0.727206618 7944 8642895 0.970578 

100 MB 104857600 1153538458 0.727206618 794376 8.64E+08 0.970579 

500 MB 524288000 5767692288 0.727206618 3971879 4.32E+09 0.970579 

1 GB 1073741824 11812233806 0.727206618 8134408 8.85E+09 0.970579 

100 GB 1.07374E+11 1.18122E+12 0.727206618    8.13E+08 8.85E+11 0.970579 

500 GB 5.36871E+11 5.90612E+12 0.727206618 4.07E+09 4.43E+12 0.970579 

1 TB 1.09951E+12 1.20957E+13 0.727206618 8.33E+09 9.06E+12 0.970579 

100 TB 1.09951E+14 1.20957E+15 0.727206618 8.33E+11 9.06E+14 0.970579 

500 TB 5.49756E+14 6.04786E+15 0.727206618 4.16E+12 4.53E+15 0.970579 

Table 2: Comparison of Data Transfer Rate between Traditional and Proposed Method. 

IX. CONCLUSION AND FUTURE WORK 

Map Reduce is an effective programming model for significant data-intensive multiplying applications. Hadoop, an open 

source implementation of Map Reduce, has been widely used. The communication overhead from the big data sets’ transmission 

affects the performance of Hadoop greatly. Hadoop is comprehensively used for considered decision making in the big data 

applications. It has many application areas like sophisticated data mining, pattern recognition, content optimizing, marketing 

analysis, network analysis, large data transformations, text processing etc. Hadoop framework can be used to make informed 

decisions in logistic freight in order to perform the freight audit.  

This study focuses on to measure the better data efficiency of periodic tasks that run on HADOOP platforms. It also studied 

how to divide the data blocks efficiently to distribute and manage the data. Data block distribution according to the proposed 

architecture in HADOOP achieved around 22% more efficiency than the other Traditional systems.  

Next we plan to work on Bandwidth in HADOOP clustering. As the HADOOP contains different categories of file extension, 

so it would be possible to increase data transmission rate by grouping files before execution. Data block distribution according to 

the proposed method in HADOOP achieved the data transfer rate better than the other traditional methods. 
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