Analysis and Design of Twisted Skyscraper Building Using ETABS

1Javed Shaikh, 2Arbaz Shaikh, 3Gaus Patel, 4Shazeb Sayed, 5Rafiq Tinwala 1Assistant Professor, 2Student, 3Student, 4Student, 5Student Rizvi College of Engineering

Abstract - The objectives of this paper is to study the behavior of a Twisted Skyscraper Building subjected to earth quake load and wind load by adopting Response spectrum analysis .The analysis is carried out with the help of FEM software's ETABS 2018. The building model in the study has G+50 (52) storeys with constant storey height of 3.5m. According to the Indian Standard Code Analysis and Design are carried out for this study. The stiffness of the bearing structure is a superior criterion in the shaping of such buildings and its value lies in the size of permissible vertical deflection. Limitation of the vertical deflection of a high-rise building is not only aimed at preventing and minimizing the adverse P-delta effects on the structure of the building. The stiffness of a tall building can also be considered as an indirect indicator of its susceptibility to dynamic influences. This impact depends on the strength of the building. High spatial rigidity reduces the amount of acceleration associated with the horizontal displacements of a structure can fall into resonance at critical wind speeds, which generates both high stresses and vertical deflection. The aerodynamic twisted shape has the advantage of disturbing the form of the impact of wind around the building to effectively reduce wind excitation

keywords - Twisted Skyscraper, Wind Effect, Response spectrum analysis, Storey Drifts, ETABS V18.

I. INTRODUCTION

1.1 GENERAL

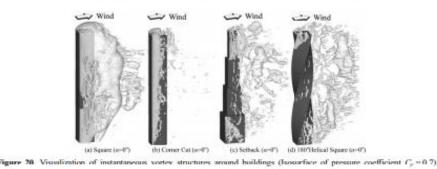
One of the biggest challenges for engineers when designing modern high buildings is the impact of wind. It has a dynamic character and its strength depends on the aerodynamic properties of the building and strength of the wind. Analysis of the aerodynamic system of buildings concerns variable phenomena, which are dependent on many unpredictable factors. The structure of air swirling around a building, as a result of air mass collision with the building's form, is very complex and not fully explained theoretically. Therefore, traditional calculation methods that are, sufficient for static load testing are not an effective tool in this regard. Experimental and advanced computer simulations are required. For buildings with complex shapes, and because there are no standard procedures for this type of construction, research is performed in an aerodynamic tunnel. Rigid reinforced concrete cores are constructed for the transfer of horizontal loads and to prevent buildings from swaying.

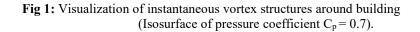
The 82,000-square-meter office tower has 52 levels, with each level rotated three degrees from the previous and the overall twist reaching 156 degrees clockwise. With the world's largest cold-bent glazing, the tower façade provides a seamless floating reflection that rotates the panoramas of the Moscow skyline vertically. The reflected clouds moving up the surface enhance the dynamic visual impact of the twisted tower, an unprecedented optical effect on this scale. The tower's crown, with a supporting steel structure made of two twisted arches, provides a helipad at the very top, as well as an open observation roof deck at level 52 featuring the best panoramas of the Moscow riverside, with views towards the historic city center.

1.2 EFFECT OF WIND FORCE ON DIFFERENT SHAPES OF BUILDING

This study is based on the research paper publish by

- 1. Environmental Engineering Department, Takenaka Research & Development Institute, Takenaka Corporation, Chiba 270-1395, Japan
- 2. Department of Architecture, Tokyo Polytechnic University, Kanagawa 243-0297, Japan
- 3. General Manager, Advanced Structural Engineering Department, Takenaka Corporation, Tokyo 136-0075, Japan
- School of Architecture, Seoul National University of Science and Technology, Seoul 139-743, Korea in September 2013, Vol 2, No 3, 213-22


For this Research 4 different shaped of 12 Models are used for Analysis


- 1) Basic models: The Square, Rectangular, Triangular, Circular, and Elliptic plan models are classified as Basic Models. The side ratio of the Rectangular and Elliptic Models is 1:2.
- 2) Corner modification models: Although there are several methods for corner modification, i.e., corner chamfered, corner cut, corner rounding, fin, and so on, the examination of corner modification focuses on a Corner Cut Model, a Corner Chamfered Model and a Tri-Corner Cut Model.

24

25

Aerodynamic and Flow Characteristics of Tall Buildings with Various Unconventional Configurations

- 3) Tapered models: The tapered models include the following five types: a 2- Tapered Model which has only two tapered surfaces, a 4-Tapered Model which has four tapered surfaces, an Inversely 4-Tapered Model which has the inverse building shape of the 4-Tapered Model, and a Bulged Model whose sectional area at mid-height is expanded.
- ⁴⁾ Helical models: The sectional shapes of the helical models are square, rectangular and triangular, and the twist angle θ between the roof floor and the base floor is set at 60°, 90°, 180°, 270° and 360°

Results of Wind-induced Responses Analysis:

The wind pressure measurements were carried out on 12 models, including 8 single-modification models and 4 compositemodification models. The single-modification models include: Square Model, Corner Chamfered Model, Corner Cut Model, 4-Tapered Model, Setback Model, two Helical Models ($\theta = 90^{\circ}$ and 180°), and Cross Opening Model (h/H = 5 /24). The compositemodification models include: 180°Helical & Corner Cut Model, 4-Tapered & 180°Helical Model, and two 4-Tapered & Helical (θ = 180° and 360°) & Corner Cut Models. Response analyses were conducted for these 12 models.

II. METHODOLOGY

2.1 METHOD FOR ANALYSIS OF THE STRUCTURE

The seismic analysis should be carried out for the buildings that have lack of resistance to earthquake forces. Seismic analysis will consider dynamic effects hence the exact analysis sometimes become complex. However for simple regular structures equivalent linear static analysis is sufficient one. This type of analysis will be carried out for regular and low rise buildings and this method will give good results for this type of buildings. Dynamic analysis will be carried out for the building as specified by code IS 1893-2016 (part1). Dynamic analysis will be carried out either by Response spectrum method or site specific Time history method. Following methods are adopted to carry out the analysis procedure.

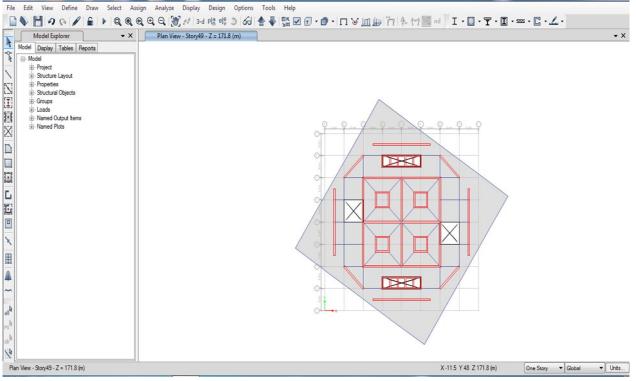
2.2 RESPONSE SPECTRUM ANANLYSIS

- Response-spectrum analysis (RSA) is a linear-dynamic statistical analysis method which measures the contribution from each natural mode of vibration to indicate the likely maximum seismic response of an essentially elastic structure. Response-spectrum analysis provides insight into dynamic behavior by measuring pseudo-spectral acceleration, velocity, or displacement as a function of structural period for a given time history and level of <u>damping</u>. It is practical to envelope response spectra such that a smooth curve represents the peak response for each realization of structural period.
- Response-spectrum analysis is useful for design decision-making because it relates structural type-selection to dynamic performance. Structures of shorter period experience greater acceleration, whereas those of longer period experience greater displacement. Structural performance objectives should be taken into account during preliminary design and responsespectrum analysis.
- The representation of maximum response of idealized single degree freedom system having certain period and Damping, during earthquake ground motions. This analysis is carried out according to the code IS 1893-2016 (part1). Here type of soil, seismic zone factor should be entered from IS 1893-2016 (part1). The standard response spectra for type of soil considered is applied to building for the analysis in ETABS 2018 software. Following diagram shows the standard response spectrum for medium soil type and that can be given in the form of time period versus spectral acceleration coefficient (Sa/g).

This approach permits the multiple modes of response of a building to be taken in to account (in the frequency domain). This is required in many building codes for all except very simple or very complex structures. The response of a structure can be defined as a combination of many special shapes (modes) that in a vibrating string correspond to the "harmonic" computer analysis can be used to determine these modes for a structure. For each mode, a response is read from the design spectrum, based on the modal frequency and the modal mass, and they are then combined to provide an estimate of the total response of the structure. In this we have to calculate the magnitude of forces in all directions i.e. X, Y & Z and then see the effects on the building. Combination methods include the following:

• absolute - peak values are added together

- square root of the sum of the squares (SRSS)
- complete quadratic combination (CQC)


2.3 BUILDING DESIGN CONSIDERATIONS

2.3.1 Model Details:

Plan Dimensions	40m X 40m			
Building Heights	Total height of building above G.L is 182.3m and floor to floor height is 3.5m			
Grade of concrete	M50 for columns, shear walls and beams M40 For slab			
Grade of Rebar	Fe-500(HYSD500) for columns, beams, Slabs and Shear walls			
Thickness of slab	220 mm			
Beam size(mm)	B600×830M50 SB700×850M50			
Column size(mm)	SC1200×1200M50			
	For inner and outer Core 400mm For lift Core			
Shear Wall Thickness	300mm			
Dead load and live load	Floor finish=1KN/m ² Live load=4KN/m ² (living room, staircase)			
Seismic load	Seismic Zone=3, Response Reduction Factor=5, Importance Factor=1.2, Soil type=2, Damping=5%			
Wind Load	V _b =44m/s, Category=3, Class=C, Gust factor as per clause 8 of IS 875 part 3			
Site Location	India(Mumbai)			
Analysis Software	ETABs v18			

Table1: Details of the Structure

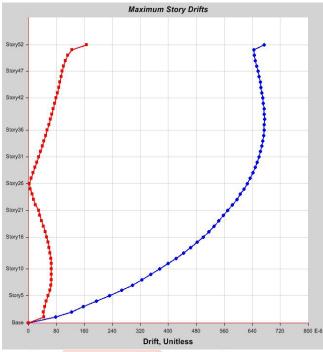

2.3.2 Plan View in Etabs

Fig2: Plan of structure in ETABS

26

III. RESULTS 3.1 STOREY DRIFT

]	Fig 3:	Graph	for Storey	Drift in	EQ-X direc	tion

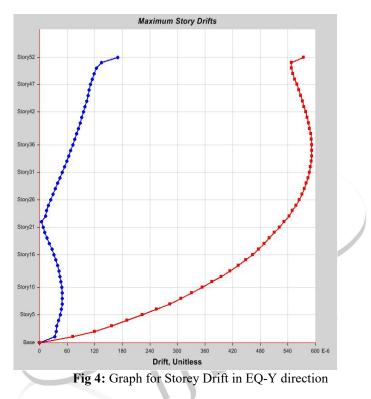

Story	Elevation(m)	Location	X-Dir	Y-Dir
Story52	182.3	Тор	0.000675	0.000166
Story51	178.8	Тор	0.000645	0.000124
Story50	175.3	Тор	0.000646	0.000112
Story47	164.8	Тор	0.000656	0.000096
Story46	161.3	Тор	0.00066	0.000093
Story35	122.8	Тор	0.000672	0.000049
Story30	105.3	Тор	0.000654	0.000025
Story29	101.8	Тор	0.000648	0.000019
Story28	98.3	Тор	0.000641	0.000014
Story27	94.8	Тор	0.000634	0.000009
Story26	91.3	Тор	0.000626	0.000003
Story25	87.8	Тор	0.000616	0.000006
Story15	52.8	Тор	0.000482	0.000057
Story14	49.3	Тор	0.000463	0.000059
Story13	45.8	Тор	0.000443	0.000062
Story12	42.3	Тор	0.000421	0.000064
Story11	38.8	Тор	0.000399	0.000065
Story5	17.8	Тор	0.000232	0.000057
Story4	14.3	Тор	0.000195	0.000052
Story3	10.8	Тор	0.000157	0.000047
Story2	7.3	Тор	0.000123	0.000043
Story1	3.8	Тор	0.000077	0.000045
Base	0	Тор	0	0

Table2: Storey Drift Values

Story	Elevation(m)	Location	X-Dir	Y-Dir
Story52	182.3	Тор	0.00017	0.000574
Story51	178.8	Тор	0.000134	0.000547
Story50	175.3	Тор	0.000124	0.000548
Story47	164.8	Тор	0.000111	0.00056
Story46	161.3	Тор	0.000108	0.000564
Story35	122.8	Тор	0.000068	0.000592
Story30	105.3	Тор	0.000044	0.000584
Story29	101.8	Тор	0.000039	0.00058

Story	Elevation(m)	Location	X-Dir	Y-Dir
Story28	98.3	Тор	0.000034	0.000576
Story27	94.8	Тор	0.000029	0.00057
Story26	91.3	Тор	0.000024	0.000564
Story25	87.8	Тор	0.000019	0.000557
Story15	52.8	Тор	0.000036	0.000448
Story14	49.3	Тор	0.000039	0.000432
Story13	45.8	Тор	0.000042	0.000414
Story12	42.3	Тор	0.000045	0.000395
Story11	38.8	Тор	0.000047	0.000375
Story5	17.8	Тор	0.000045	0.000223
Story4	14.3	Тор	0.000041	0.00019
Story3	10.8	Тор	0.000038	0.000156
Story2	7.3	Тор	0.000036	0.000119
Story1	3.8	Тор	0.000034	0.000072
Base	0	Тор	0	0

Table3: Storey Drift Values

Store	Elevation(m	Location	X-	Y-
Story)	Location	Dir(mm)	Dir(mm)
Story52	182.3	Тор	97.802	2.392
Story51	178.8	Тор	95.493	1.842
Story45	157.8	Тор	81.838	0.468
Story44	154.3	Тор	79.519	0.776
Story43	150.8	Тор	77.194	1.072
Story35	122.8	Тор	58.395	2.948
Story34	119.3	Тор	56.046	3.114
Story33	115.8	Тор	53.705	3.264
Story24	84.3	Тор	33.434	3.81
Story23	80.8	Тор	31.317	3.785
Story21	73.8	Тор	27.202	3.676
Story15	52.8	Тор	15.973	2.882
Story12	42.3	Тор	11.133	2.284
Story11	38.8	Тор	9.669	2.068
Story5	17.8	Тор	2.715	0.778
Story4	14.3	Тор	1.917	0.597
Story3	10.8	Тор	1.246	0.436

IJEDR2003005

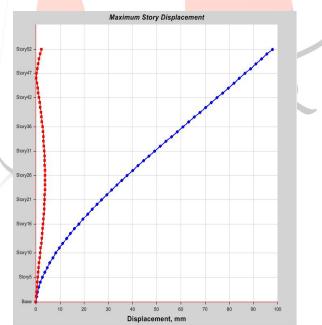
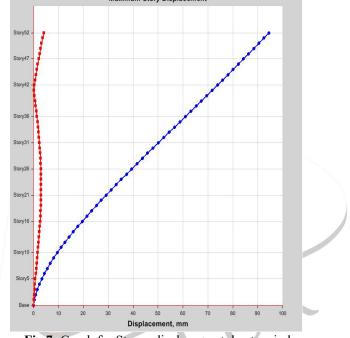

Story	Elevation(m)		X- Dir(mm)	Y- Dir(mm)
Story2	7.3	Тор	0.704	0.295
Story1	3.8	Тор	0.294	0.17
Base	0	Тор	0	0

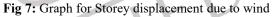
 Table 4: Story Displacement Values

-		Maxi	mum Sto	ry Displac	ement			
Story52 -)	1	
Story47 -					,	1		
story42 -					/			
Story36 -				1				
Story31 -			1					
itory26 -		1						
itory21 -	1							
itory16 -	/							
itory10 -								
Story5								
Base 0 10	20	30	40	50 60	70	80	90	100

Fig 5: Graph for Storey displacement in EQ-X direction

Fig 6: Graph for Storey displacement in EQ-Y


Story	Elevation	Location	X-Dir	Y-Dir
	m		mm	mm
Story52	182.3	Тор	5.448	87.279
Story51	178.8	Тор	4.883	85.329
Story45	157.8	Тор	2.437	73.719
Story44	154.3	Тор	2.071	71.735
Story43	150.8	Тор	1.718	69.737
Story35	122.8	Тор	0.795	53.386
Story34	119.3	Тор	1.024	51.318


IJEDR2003005 International Journal of

Story	Elevation	Location	X-Dir	Y-Dir
	m		mm	mm
Story33	115.8	Тор	1.237	49.251
Story24	84.3	Тор	2.382	31.109
Story23	80.8	Тор	2.429	29.189
Story22	77.3	Тор	2.457	27.298
Story21	73.8	Тор	2.467	25.441
Story15	52.8	Тор	2.111	15.107
Story12	42.3	Тор	1.726	10.599
Story11	38.8	Тор	1.577	9.222
Story5	17.8	Тор	0.618	2.628
Story4	14.3	Тор	0.478	1.852
Story3	10.8	Тор	0.349	1.187
Story2	7.3	Тор	0.234	0.651
Story1	3.8	Тор	0.128	0.275
Base	0	Тор	0	0

 Table 5: Story Displacement Values

 Maximum Story Displacement

Story	Elevation	Location	X-Dir	Y-Dir
	m		mm	mm
Story52	182.3	Тор	94.549	4.239
Story51	178.8	Тор	92.444	3.706
Story50	175.3	Тор	90.426	3.265
Story47	164.8	Тор	84.283	2.113
Story46	161.3	Тор	82.207	1.753
Story45	157.8	Тор	80.121	1.403
Story43	150.8	Тор	75.917	0.731
Story42	147.3	Тор	73.798	0.411
Story41	143.8	Тор	71.671	0.104
Story40	140.3	Тор	69.535	0.371
Story37	129.8	Тор	63.095	1.171
Story36	126.3	Тор	60.928	1.41
Story35	122.8	Тор	58.759	1.634
Story34	119.3	Тор	56.59	1.843
Story32	112.3	Тор	52.247	2.219
Story31	108.8	Тор	50.086	2.383
Story30	105.3	Тор	47.933	2.529
Story27	94.8	Тор	41.53	2.863

Story	Elevation	Location	X-Dir	Y-Dir
	m		mm	mm
Story26	91.3	Тор	39.422	2.937
Story25	87.8	Тор	37.331	2.994
Story24	84.3	Тор	35.255	3.03
Story23	80.8	Тор	33.198	3.057
Story21	73.8	Тор	29.137	3.052
Story20	70.3	Тор	27.167	3.019
Story17	59.8	Тор	21.414	2.792
Story16	56.3	Тор	19.567	2.677
Story15	52.8	Тор	17.758	2.544
Story14	49.3	Тор	15.994	2.397
Story13	45.8	Тор	14.285	2.236
Story12	42.3	Тор	12.636	2.063
Story10	35.3	Тор	9.532	1.692
Story9	31.8	Тор	8.112	1.498
Story8	28.3	Тор	6.767	1.303
Story7	24.8	Тор	5.5	1.108
Story6	21.3	Тор	4.33	0.922
Story5	17.8	Тор	3.273	0.745
Story4	14.3	Тор	2.342	0.58
Story3	10.8	Тор	1.546	0.431
Story2	7.3	Тор	0.887	0.299
Story1	3.8	Тор	0.371	0.177
Base	0	Тор	0	0

 Table 6: Story Displacement Values

IV. CONCLUSION

From the above study following conclusions are made

- 1. The values of storey drifts decrease from top storey to bottom storey and the maximum value is obtained for storey 50 (i.e. 0.00065 and 0.000574 in X-Direction and Y-Direction resp) and according to IS 1893-2016 part 1 this values are within the limit(i.e. maximum drift allowed is 0.004 of storey height).
- 2. Top storeys are more susceptible to the drifts, building torque, forces and moments and these values decrease as we move on to the bottom storeys.
- 3. As the height of the building increases, lateral forces plays a dominant role. Therefore, certain provisions shall be made in order to resist these lateral forces so that building performance under the effect of lateral loads can be improved.
- 4. Skyscraper Building subjected to earth quake load has been analyzed by adopting Response spectrum analysis by using ETABS V18.
- 5. It has become clear that super tall buildings require more efficient design than normal high-rise buildings and that it is not possible to simply use a scaled up structural system of a 100 meter high building for a 800 meter high building. Super tall buildings require a different and more structurally efficient design. The changes in the design are necessary for the following reasons.
 - Larger consequence of negative effects due to differential settlements.
 - Increasing lateral Wind Load.
 - Susceptibility to dynamic behavior.
 - Daylight entry problem.
 - Vertical transportation large influence of the erection process and construction time on the projects feasibility.

REFERENCES

- 1. Abel, C. (2003). Sky high: Vertical architecture. London, United Kingdom: Royal Academy of Arts.
- 2. Ali, M. (2001). Art of the skyscraper: The genius of Fazlur Khan. New York, NY: Rizzoli International Publishing.
- 3. Architectural Institution of Japan. (2004a). Recommendations for Loads on Buildings 2004.
- 4. Architectural Institution of Japan. (2004b). Guidelines for the evaluation of habitability to building vibration.
- 5. Kim, Y. C. and Kanda, J. (2010b). "Effects of taper and setback on wind force and wind-induced response of tall buildings." Wind and Structures, 13(6), pp. 499~517.
- 6. Kim, Y. C. and Kanda, J. (2013). "Wind pressures on tapered and set-back tall building." Journal of Fluids and Structures, 39, pp. 306~321.
- 7. Kim, Y. M., You, K. P. and Ko, N. H. (2008). "Across-wind Response of an Aeroelastic Tapered Tall Building." Journal of Wind Engineering and Industrial Aerodynamics, 96, pp. 1307~1319.
- Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Kim, Y. C. (2012). "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations." Journal of Wind Engineering and Industrial Aerodynamics, 107-108, pp. 179~ 191.