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Abstract - Image captioning for Social Media—the task of providing caption of the content within an image—Ilies at the
intersection of Computer Vision (CV) and Natural Language Processing (NLP). In this paper, we present a model
based on a recurrent architecture that combines the recent advances in computer vision and machine translation and
thus it can be used to generate captions for an image. It is an integral task which requires semantic understanding of
images and the ability of generating Captions with proper relevant meaning and structure. The main aim of the paper
is to train Convolutional Neural Network (CNN) and Long Short term memory (LSTM) model with many hyper
parameters which extract features from the image and map these features to their appropriate descriptive keywords
and apply it on a large dataset of pictures and combine the results with a Recurrent Neural Network (RNN) to
generate dynamic and suitable captions and hash tags for social media for the classified image. Using the Flickr8K,
Flickr30K datasets and also we had designed our own dataset of different categories of image in order to show more
accuracy in generating captions.

keywords - Image Captioning, Computer Vision, Convolutional Neural Network, Recurrent Neural Network, Long
Short term memory

I. INTRODUCTION
All Humans can describe a scene in an image with no difficulty, but this task has been difficult for computers (Karpathy and
Fei-Fei 2015). Scene Description can be instrumental, such as helping visually impaired people better understand images on the
internet (Vinyals et al. 2015).

Scene Understanding has been an active area of research in computer vision since the task is broad and requires models that
can perform various tasks as one. Mainly, scene understanding requires detecting and recognizing known objects, localizing the
objects and learning the spatial relationships between the objects. The model should also be robust to changes in illumination
changes, and be able to handle occlusions (Aarthi and Chitrakala 2017).

The task of image captioning is challenging since generating meaningful captions requires identifying essential objects and
learning language dependencies and correctly using the recognized objects in a proper sentence based on the language.

Through this project, we aim to choose one approach and experiment with it and show the results that were obtained.

II. BACKGROUND
Convolutional Neural Network

A convolutional neural network is an architecture of a neural network that has been used for image classification and object
detection with great success. The most common architecture consists of three main operations that are repeated several times.
Firstly, a convolution is applied to the image are not predetermined but are learned from the data. Further, this result is then
compressed into smaller matrices with the help of pooling. Pooling is the process of aggregating results from regions in a
manner similar to convolution. Pooling can be done in various ways such as max-pooling that retains the maximum element in
the pooling region, min pooling or average pooling.

The size of the convolution filter, the pooling region, the number of filters to use and the number of convolution and dense
layers are hyper parameters and need to be set by trying what works best for a problem. These are the parameters that need to
be set properly for best results. (contributors 2018a)

There are various architectures of Convolutional Neural networks that have been used for different tasks, and there is active
research in the area. Three models were used for the purpose of this project -VGG16, VGG19, and ResNet50.

The VGG architecture was first introduced in (Simonyan and Zisserman 2014) for image classification on the ImageNet
data set. The architecture is known for its simplicity as it uses only a 3 %3 convolutional layers stacked on top of each other.
The VGG 19 model has more of these layers stacked compared to the VGG16. The volume is reduced in each step with the
help of max pooling. These convolutional layers are followed by two fully connected layers that flatten the output and a
softmax layer that predicts the probability of each of the objects the model was trained for. (Rosebrock 2017).

The Residual Networks (ResNet) introduced first in (He et al. 2016) consists of stacked Residual blocks. The residual block
comprises a skip connection which makes it easier to learn the identity function and hence stacking theseresidual blocks helps
us go more in-depth and avoid thediminishing gradient problem (Rosebrock 2017).
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Recurrent Neural Network

One of the significant limitations of using traditional feed forward neural networks is they are trained with input and output
vectors. The order of these vectors does not affect the predictions made after training, and they produce fixed size outputs.
There is no way of learning sequences and learning context or dependencies in various vectors in the sequence when using
traditional neural networks. This is where Recurrent Neural Networks come to help (Karpathy 2015).

The input to the hidden layer in an RNN (with a single hidden layer) is the input vector, along with the output of the hidden
layer for the previous time step. The RNNs are trained to learn to predict the next word given the current example. This is done
for multiple times in each iteration, which represents the length of the sequence that the RNN can learn and predict later. The
Network is trained using back propagation through time, which adjusts the weights between the hidden layer for a given time
step and the next time step. Once trained for var- ious iterations, the RNN can learn to model the sequence (contributors 2018c¢).

There are problems with RNNs, when learning long sequences, in situations such as the language translation of large
documents, where it may be necessary to remember only the context over a small time period. For this purpose, Long Short
Term Memory (LSTM) networks are used, where each cell has three gates - input, forget and output and can learn when to
forget the previous context, along with other parameters. The LSTM is trained such that each LSTM cell updates its weights at
each time step and the all the weights are updated after each iteration. This helps the network learn long sequences and decide
which parts of the sequences are related with some context (Trask 2015) (contributors 2018b). Gated Recurrent Units (GRUs),
another type of Recurrent Neural Network, have also become quite popular to solve the same problem. In a GRU unit, there is
only an update gate and a reset gate; however, there exist variations of GRU such as a minimal gated unit in which there exists
only one gate (forget gate). GRUSs train faster compared to LSTMs while giving comparable results.

RNNs, LSTMs, and GRUs have been used to learn long sequences of text and music and to generate new documents given
some starting words or phrases (Karpathy 2015).

III. RELATED WORK

One of the influential papers by Andrej Karpathy et al. in image captioning divides the task into two steps: mapping
sentence snippets to visual regions in the image and then using these correspondences to generate new descriptions (Karpathy
and Fei-Fei 2015). The authors use a Region Convolutional Neural Network (RCNN) to represent images as a set of h
dimensional vectors each representing an object in the image, detected based on 200 ImageNet classes. The authors represent
sentences with the help of a Bidirectional Recurrent Neural Network (BRNN) in the same h dimensional space. Each sentence
is a set of h dimensional vectors, representing snippets or words. The use of the BRNN enriches this representation as it learns
knowledge about the context of each word in a sentence. The authors find that with such a representation, the final
representation of words aligns strongly with the representation of visual regions related to the same concept. They define an
alignment score on this representation of words and visual regions and align various words to the same region generating text
snippets, with the help of a Markov Random Field. With the help of these correspondences between image regions and text
snippets, the authors train another model that generates text descriptions for new unseen images (Karpathy and Fei-Fei 2015).

The authors train an RNN that takes text snippets and visual regions as inputs and tries to predict the next word in the text
based on the words it has seen so far. The image region information is passed to the network as the initial hidden state at the
initial time step, and the network learns to predict the log probability of the next most likely word using a softmax classifier.
The authors use unique START and END tokens that represent the beginning and end of the sentence, which allows the
network to make variable length predictions. The RNN has 512 nodes in the hidden layer (Karpathy and Fei-Fei 2015).

The network for learning correspondences between visual regions and text words was trained using stochastic gradient
descent in batches of 100 image-sentence pairs. The authors used dropouts on-every layer except the recurrent layers and
clipped the element-wise gradients at 5 to prevent gradient explosion. The ' RNN to generate descriptions for unseen im- ages
was trained using RMSprop which dynamically adjusts the learning rate (Karpathy and Fei-Fei 2015).

Kelvin Xu et.al (Xu et al. 2015) use the concept of attention to better describe images. The authors propose models that
focus on which area of the image, and what objects in the image are being given attention and evaluate these models on
different image captioning datasets. The idea be- hind the approach is that much like the human visual system, some parts of
the image may be ignored for the task of im- age description, and only the salient foreground features are considered. The
authors use a CNN to learn important features of the image and an LSTM (Long short-term memory network) to generate
description text based on a context vector.

Jyoti Aneja et al. in (Aneja, Deshpande, and Schwing 2017) use a convolutional approach to generate description text

instead of a simple RNN, and show that their model works at par with RNN and LSTM based approaches.
Andrew Shin et al. (Shin, Ushiku, and Harada 2016) use a second neural network, finely tuned on text-based sentiment
analysis to generate image descriptions which capture the sentiments in the image. The authors use multi-label learning to learn
sentiments associated with each of the im- ages, then use these sentiments, along with the input from the CNN itself as inputs
to an LSTM to generate sentences which include the sentiment. The LSTM is restricted sothat each description contains at least
one term from the senti ment vocabulary.
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Figure 1: Sample image and captions

Alexander Mathews et al. (Mathews, Xie, and He 2016) emphasize how only a few image descriptions in most datasets
contain words describing sentiments, and most descriptions are factual. The authors propose a model that consists of two CNN
+ RNN models each with a specific task. While one model learns to describe factual content in the image, the other learns to
describe the sentimental ssociated, thus providing a framework that learns to generate sentiment based descriptions even with
lesser image sentiment data.

Quanzeng You et.al in (You, Jin, and Luo 2018) propose approaches to inject sentiment into the descriptions generated by
image captioning methods.

Tsung Yi Lin et.al in (Lin et al. 2014) describes the Microsoft Common Objects in Context dataset,that is widely used for
benchmarking image captioning models.

IV. APPROACH
Dataset
The data set is a collection of 10000 images with five captions each, collected in one place, and available to be used for the
benchmarking of image captioning and im- age querying approaches (Rashtchian et al. 2010).The authors show that better
results can be achieved when multiple captions are used with each image, to train the model. A manual data set of 2000 images
was created with relevant 50000 caption is was used to provide final results of model
Figure 1 is a sample image file in dataset. The image is paired with following five human-generated training captions:
* Sunsets and oceans. It’s what I do.
* A mind-boggling, awe-inspiring, spine-tingling sunset.
* A sunset that good doesn’t need a filter.
* Watch the sunset. Not Netflix.
* Here comes the sunset.
» Data Preprocessing
We divide the training data (10000) and the captions into three different data sets - the training set (8000), the validation set
(1000) and the test set (1000). For each of the captions in the three data sets, we create a set of training input and target
captions by shifting the training input caption by one word to get the training target caption.

Image Preprocessing

To generate image features we use pretrained weights of CNNs trained on ImageNet image classification dataset (VGG16,
VGG19, and ResNet50) and remove the final dense layers from the model. We preprocess images and generate image features
using the by performing a forward pass on the image on using these weights and save these features to a file.

Caption Preprocessing

To preprocess the image captions in the training data, we first identify all the words that are there in the data set. We then
generate a histogram of the distribution of these words and drop the words that occur less than five times. We end up with the
vocabulary of size 2531 words

Model takes an input image and then further generates a caption as shown in figures 2 and 3.

Model

The model that was used for the project consists of two different input streams, one for the image features, and the other for
the preprocessed input captions. The image features are passed through a fully connected (dense) layer to get a representation
in a different dimension. The input captions are passed through an embedding layer. These two input streams are then merges
and passed as inputs to an LSTM layer. The image is passed as the initial state to the LSTM while the caption embedding’s are
passed as the input to the LSTM. The architecture is shown in figure 2.

Training

The model was trained first on Nvidia GeForce MX 250. We faced memory problems using different batch sizes and hence
moved to a better GPU. We then used the Alienware R17 which includes intel 19 processor with 6 core, 32GB RAM and
Nvidia GTX1080 8GB. Training the model takes about 6 hours

To train the model, for each image and each of the input captions that were generated during preprocessing, we pass the
image features through the dense layer, and the pre- processed input captions to the embedding layer. We then use the image as
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the initial state to the LSTM, along with the caption which is passed as the input to the LSTM. The model outputs a predicted
caption as shown in figure 3.

Word Embedding

Word Embedding’s provide a vector representation of words that can capture something about the context of the word.
There are many pretrained word embedding available; however, our model learns the word embedding as part of the model
itself.

input: (None, None) input: (None, 512)
caption_mput: InputLayer image_input: InputLayer
output: | (None, None) output: | (None,512)

input: (None, None) input (None, 512)
Embeddine: Embeddi img_embedding: Dense
output: | (None, None, 300) output: | (None, 300)

o

input: [(None, None, 300), (None, 300), (None,, 300)]

decoder: LSTM

output: | [(None, None, 300), (None, 300), (None, 300)]

!

time_distributed_1(dense _1): TimeDistributed(Dense)

input: (None, None, 300)

output: | (None, None, 2531)

Figure 2: Model Architecture
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Figure 3: Traini;g the model using VGG16 image features

Evaluation Metric

The Bilingual Evaluation Understudy score (BLEU score) was used as the metric to evaluate the generated captions
generated by the model. The BLEU score is a metric for evaluation of machine-generatedtranslations, but can also be used to
evaluate machine generated sentences in various natural language processing tasks. It is a common metric for evaluating image
captions (Jason Brownlee 2017).

The BLEU score is designed to give a score between 0 to 1 (often scaled to a range of 0-100) on a corpus level and often
does not produce good results on individual sentences. The BLUE score can be calculated for various n-grams and represents
for each sentence the relative number of matching n-grams in the reference sentences. The scores of all the sentences are
combined using a geometric mean with a penalty applied to short sentences to prevent very short sentences that are not suitable
translations, from having high scores (Wikipedia contributors 2018a).

For the purpose of this project we calculate BLEUscores for unigrams u to 4-grams (BLEU1 to BLEU4 respectively) to
compare results of different models that were used. We use the images in the test set, and generate captions using our model.

Metric VGG16 VGG19 ResNet50
BLEU1 51.21 52.59 51.56
BLEU2 21.39 21.89 22.68
BLEU3 8.28 8.20 8.95
BLEU4 3.28 3.23 3.88

Table 1: Greedy (embedding size: 300, LSTM size: 300, learning rate: 0.0001, dropout: 0.2, batch size: 32, epochs:10)

Metric VGG16 VGG19 ResNet50
BLEU1 54.26 54.98 56.74
BLEU2 23.98 24.18 25.85
BLEU3 10.01 10.02 10.89
BLEU4 3.94 3.87 4.42
Table 2: Beam Search (embedding size: 300, LSTM size: 300, learning rate: 0.000051, dropout: 0.2, batch size: 32,
epochs: 33)
Optimization

The RMSprop optimization was used to minimize the loss and train the model. The problem with training deep networks
for complicated tasks is that the gradient of these arbitrarily complicated functions can either explode or vanish as the errors
are back propagated. RMSprop optimization uses a moving average of the squared gradients to normalize the gradient. This in
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effect adaptively changes the step size depending on the gradient value medium-RMSprop. RMSprop was developed for batch
training of neural networks and it has been observed that RMSprop works well for LSTM networks.

Inference

To perform inference, we first obtain image embedding by passing the image through the CNN model and then the dense
layer. Then to generate captions using the model, we first feed the LSTM cell as the first input and image embedding as its
initial states. The LSTM produces a word and its hidden states, and we keep feeding this word and hidden states again to the
LSTM cell reaches the max sentence length.

Metric VGG16 VGGI19 ResNet50
BLEU1 55.16 55.54 57.39
BLEU2 24.73 24.66 26.51
BLEU3 10.71 10.51 11.78
BLEU4 4.28 4.46 4.97

Table 3: Beam Search (embedding size: 512, LSTM size: 512, learning rate: 0.000051, dropout: 0.2, batch size: 32,epochs:

33)
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Figure 4: Inference: Generating captions once the LSTM is trained
Beam Search
Instead of sampling in a greedy approach described above, the better way is to do Beam Search where we keep k best
sentences produced so far up to time t to generate sentences of size t + 1. In this way, we get k best sentences at the end. Beam
Search significantly improved our BLEU scores as shown in table 2. We used various beam sizes for our experiments. Using
Beam Search favors sentences with shorter lengths, and so we implemented length normalization to get the sentences with
maximum average log probability.

V. EXPERIMENTS
The model was trained 3 times for each of the CNNs models that we used. First, we trained the model using the learning rate
as 0.0001 for 10 epochs and used greedy approach to generate captions. The BLEU scores for this set of hyper parameters are
shown in table 1.

Next we decreased the learning rate to 0.000051, and trained the model to 33 epochs and used beam search to generate
sentences. The BLEU scores for this set or hyper- parameters are given in table 2. We can see that there is a significant
improvement in the BLEU scores

Finally we increased the size of the embedding layer and the dense layer from 300 to 512, increased the LSTM size from
300 to 512 and trained the model again for 33 epochs. The BLEU scores for these hyper parameters are given in table 3. We
can see that increasing the LSTM size and the size of the embedding layer lead to even better results, even though it took
significantly longer time to train the models with these hyperparameters.

We cleaned up our code and created two files that use argument parser to specify parameters for training and the model,
and generating captions using trained weights. We also created a simple web application in python with the help of flask that
allows users to upload an image and uses the the trained weights to generate image captions.

VI. RESULTS
The table 3 shows the bleau score is highest with the model that uses ResNet to generate image features. The results shown
here are for the ResNet50 model using a LSTM size of 512 and a embedding layer and a dense layer size of 512. The images in
the results show captions, generated.
The sentence corresponds to the best caption according to the beam search.
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Generated caption

sandy toes sun kissed nose

Figure 5: Beach: Results using ResNet50, LSTM size 512

Generated caption

we are letting nature take its course

Figure 6: Dog: Results using ResNet50, LSTM size 512
VII. CONCLUSION
Through this project, we learned about the deep learning techniques used for image captioning problem. We experimented
with three distinct CNN models and compared the results of different models using BLEU scores, By comparing we came to a
conclusion that ResNet50 was the most suitable and efficient model for us. It captured more than enough information about the
image to generate captions.

We learned that the result of generated captions is influenced by the training dataset. The Flickr8k and manual dataset
contains many outdoor images of Nature, Beaches and sunsets and our model gives better results on outdoor images without
people and is capable of differentiatitng between various natural objects.

We implemented beam search and found that the BLEU scores for sentences generated using beam search are significantly
better Future Work.

VIII. FUTURE WORK

In this project we implemented a model, and experimented with different parameters to see the results. Future exploration
can be done to compare the current results to those obtained with using different CNN models. Further comparisons can be
made to approaches that include visual and temporal attention. We also intend to create an Android app for the users.
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