
Hardware Implementation of Edge Detection Algorithms | ISSN: 2321-9939

IJEDRCP1401016
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR(www.ijedr.org)

(Two Day National Conference (RTEECE-2014) -17th ,18th January 2014)
55

Hardware Implementation of

Edge Detection Algorithms
1
Vaishnav Tej Akhil,

2
Prof.Amit Kumar,

3
Prof.Ekta Chotai

Electronics and Communication Department, Marwadi College of Engineering, GTU, Rajkot, India
1Vaishnavtej9@gmail.com, 2Amit.kumar@marwadieducation.edu.in, 3Ekta.chotai@gmail.com

Abstract—An Edge detection algorithm is used in Image

processing in order to reduce the data to be processed. It is

widely used in various real time applications such as traffic

signaling, number plate detection, tumor detection etc. So to use

it in real time we require hardware implementation of it. In this

paper we have presented details about how to implement an Edge

detection algorithm by loading an image into FPGA using

VHDL.An image is loaded into FPGA kit through few ways

which is mentioned in this paper and the most effective way is

utilized in the end through which there is computational ease and

less memory requirement.

I. INTRODUCTION

In today's era edge detection is widely used in much
application. Many types of edge detection techniques are
available. Edge detection is a type of image segmentation
techniques which determines the presence of an edge or line in
an image and outlines them in an appropriate way. The main
purpose of edge detection is to simplify the image data in
order to minimize the amount of data to be processed.
Different types of edge detection algorithms are

1. ROBERTS
2. PREWITT
3. SOBEL
4. CANNY

The principle of edge detection is: Edge widely exists
between objects and backgrounds, objects and objects.
Therefore, the general method of edge detection is to study the
changes of a single image pixel in a gray area, use the
variation of the edge neighboring first order or second-order to
detect the edge.

II. VARIOUS EDGE DETECTION ALGORITHMS

A. Roberts and Prewitt Operator

The Roberts Cross operator performs a simple, quick to
compute, 2-D spatial gradient measurement on an image. Pixel
values at each point in the output represent the estimated
absolute magnitude of the spatial gradient of the input image
at that point.The operator consists of a pair of 2×2 convolution
kernels as shown in Figure. One kernel is simply the other
rotated by 90 degree.

Figure 1: Robert mask

These kernels are designed to respond maximally to edges
running at 45° to the pixel grid, one kernel for each of the two
perpendicular orientations. The kernels can be applied
separately to the input image, to produce separate
measurements of the gradient component in each orientation
(call these H1 and H2). These can then be combined together

to find the absolute magnitude of the gradient at each point
and the orientation of that gradient.

Prewitt operator is given as

Figure 2 :Prewitt mask

Robert’s operator have a big disadvantage that it has no
fix centre as it 2 by 2 mask. It is more prone to noise.
Prewitt’s operator have good noise reduction capacity but it
does not have any special effect around center pixel. It is
same for all the pixels.

B. Canny Operator

The Canny algorithm uses an optimal edge detector
based on a set of criteria which include finding the
discontinuities by identifying strong edges, and preserving
the relevant weak edges, in addition to maintaining some
level of noise suppression. While the results are desirable,
the hysteresis stage slows the overall algorithm down
considerably. The performance of the Canny algorithm
depends heavily on the adjustable parameters, σ, which is
the standard deviation for the Gaussian filter, and the
threshold values, th and tl. σ also controls the size of the
Gaussian filter. The bigger the value for σ, the larger the
size of the Gaussian filter becomes. This implies more
blurring, necessary for noisy images, as well as detecting
larger edges. As expected, however, the larger the scale of
the Gaussian, the less accurate is the localization of the
edge. Smaller values of σ imply a smaller Gaussian filter
which limits the amount of blurring, maintaining finer edges
in the image.

The Canny Edge Detection Algorithm has the following
Steps: Step 1: Smooth the image with a Gaussian filter.
Step 2: Compute the gradient magnitude and orientation
using finite- difference approximations for the partial
derivatives.

C. Sobel Operator

The Sobel operator is a classic first order edge detection
operator computing an approximation of the gradient of the
image intensity function. At each point in the image the
result of the Sobel operator is the corresponding norm of
this gradient vector. The Sobel operator only considers the
two orientations which are 0 and 90 degrees convolution
kernels.

mailto:Vaishnavtej9@gmail.com
mailto:Amit.kumar@marwadieducation.edu.in
mailto:Ekta.chotai@gmail.com

Hardware Implementation of Edge Detection Algorithms | ISSN: 2321-9939

IJEDRCP1401016
INTERNATIONAL JOURNAL OF ENGINEERING DEVELOPMENT AND RESEARCH | IJEDR(www.ijedr.org)

(Two Day National Conference (RTEECE-2014) -17th ,18th January 2014)
56

Figure 3 : Sobel mask

The Sobel operator performs a 2-D spatial gradient

measurement on an image and emphasizes regions of high
spatial gradient that correspond to edges. Typically it is used
to find the approximate absolute gradient magnitude at each
point in an input grayscale image.
Compared to other edge operator, Sobel has two main
advantages:

1. Since the introduction of the average factor, it has
some smoothing effect to the random noise of the
image.

2. Because it is the differential of two rows or two
columns, so the elements of the edge on both sides
has been enhanced, so that the edge seems thick and
bright.

III. HARDWARE IMPLEMENTATION

Any edge detection operator or algorithm is a software so

to work on it in real time we require a hardware
implementation of it through some processors. FPGA or
VHDL have parallel processor architecture so their speed is
more and area occupied is less as they are application specific
compared to other multipurpose processors.

Application specific hardware designs enjoy exponential
gains in computation speed, compared to equivalent software
designs, since they can take advantage of the highly parallel
nature of their architecture. The main thing is to interface the
matlab with xilinx for a real time image for its application in
real time which requires a hardware description language for
which we are using VHDL[4] [5] [6].

System Generator can be useful when implementing the
design flow as described by With Simulink, with its blocksets,
and Matlab code we can explore an algorithm in a functional
domain. Using System Generator blocks (Xilinx blockset) we
can also design in the functional domain, but towards an
FPGA implementation (physical domain). System Generator
provides interfaces to CAD tools (ISE, Model Sim). System
Generator automatically compiles designs into low-level
representations. Experiments using hardware generation can
suggest the hardware speeds that are possible and, through the
resource estimation, give a rough idea of the cost of the design
in hardware. If a promising approach is identified, system
generator can create the bit stream (physical level) to the
FPGA.

System Generator allows refinements (lower levels) to be
done in steps. Some portions of the design can be made ready
for implementation in hardware, while others remain described
by Simulink blocks, System generator blocks or were designed
outside and are inside a wrapper to be wired in the System
Generator tool. The mixed descriptions can be simulated in a
multiple environment.
System Generator offers mechanisms to:

1) To import HDL code into a design. A configuration
wizard can be used to associate the HDL module to a
Black Box block. The wizard creates an M-function

that defines the interface, the implementation and
the simulation behavior of the black box block it is
associated with.

2) To automatically generate an HDL test bench,
including test vectors. Upon requested, System
Generator generates a test bench that produces files
to allow comparisons of simulation results between
Simulink and Model Sim(HDL Simulator). The
test bench is a wrapper that feeds the stimuli to the
HDL for the design and compares HDL results
against expected ones.

3) To perform hardware co-simulations, hardware run
under the control of Simulink, bringing the power
of MATLAB and Simulink to bear for data
analysis and visualization. For hardware Co-
Simulation, a bit stream is created and associated
to a block. When the design is simulated in
Simulink, results for the compiled portion are
calculated in hardware.

The most efficient and convenient way is to load an

image directly into FPGA kit. We can use Altera or Spartan
kit according to our requirement and use VHDL code to
implement edge detection. So in the end it generates a bit
stream file which can be used through hardware in real time
applications.

The image loaded is stored in FPGA RAM which is
temporary. For any image with high resolution or size we
can use MATLAB for interfacing through simulink
otherwise direct loading is a feasible way to interface. It
depends on the image how much variables are required and
of Boolean data type in VHDL.

IV. CONCLUSION

We conclude that we have studied a lot about edge
detection algorithms and their applications .Out of them we
conclude that Sobel algorithm gives the best result. We have
implemented this software based algorithms on hardware
through Spartan/Altera kit using VHDL as a hardware
description language. Through this we can have a real time
application of these algorithms and improvisation can be
done in future.

REFERENCES

[1] G.T. Shivrakshan “A Comparison of various Edge

Detection Techniques used in Image Processing” IJCSI
International Journal of Computer Science issues
volume 9.

[2] Wenshuo Gao, Lei Yang, Xiaoguang Zhang, Huizhong
Liu “An improved Sobel algorithm”,IEEE.

[3] Nick Kanopoulos,” Design of an Image Edge Detection
Filter Using the Sobel Operator”,IEEE journal of solid-
state circuits, vol. 23.

[4] Fuming Sun, Jing Liang, Xiaoling Li, Qin

Wang,”Texture Simulation and Implementation Based
on Matlab & Simulink.

[5] G. Anusha, Dr.T. JayaChandra Prasad, Dr.D. Satya

Narayana ,“Implementation of SOBEL Edge
Detection on FPGA”, International Journal of

Computer Trends and Technology-volume3.
[6] Craig Moore, Harald Devos and Dirk Stroobandt”

Optimizing the FPGA Memory Design for a Sobel
Edge Detector”.

