
© IJEDR 2019 | Volume 7, Issue 4 | ISSN: 2321-9939 

 

IJEDR1904001 International Journal of Engineering Development and Research (www.ijedr.org) 1 

 

Incompressible and compressible Fluids Concerning 

With Lagrangian 

1Jai Prakash Singh 

1Research Scholar 

1Deptt. Of Mathematics, J.P.University, Chapra 

_____________________________________________________________________________________________________ 

Abstract - This paper covers that an as of late proposed variational rule with a spasmodic Lagrangian for thick stream is 

reinterpreted against the foundation of stochastic variational portrayals of dissipative frameworks, supporting its 

physical premise from an alternate perspective. It is appeared extra non-traditional commitments to the rubbing power 

happening in the energy equalization disappear by time averaging. In like manner, the spasmodic Lagrangian can on 

the other hand be comprehended from the outlook of a comparable to deterministic model for irreversible procedures 

of stochastic character. An examination is made with set up stochastic variational portrayals and an option deterministic 

methodology dependent on a first fundamental of Navier–Stokes conditions is embraced. The materialness of the broken 

Lagrangian approach for various Reynolds number routines is examined considering the Kolmogorov time scale. A 

speculation for compressible stream is explained and its utilization exhibited for damped sound waves. 
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Introduction: 

Discovering variational details for physical frameworks is useful concerning a more profound comprehension of the 

framework and for setting up new arrangement techniques, both investigative and numerical. As is outstanding, this deliberate 

idea is in a perfect world fit to, for instance, the field of moderate Newtonian mechanics. As opposed to this, in continuum 

hypotheses many open issues stay unsolved, ordinarily in the field of thick stream; since there are, when all is said in done, no 

required development rules for building up variational standards, for specific issues an assortment of proposals have showed up 

from various creators dependent on various methodologies. One needs to recognize two noteworthy classes, in particular 

between variational plans dependent on a field portrayal (Eulerian depiction), and stochastic variational portrayal dependent on 

a material portrayal (Lagrangian portrayal) and averaging molecule movement. 

Clebsch transformation 

Early attempts by Millikan1  showed the non-existence of a Lagrangian in terms of the velocity u, the pressure p and 

their first-order derivatives that delivers the Navier–Stokes equations as Euler–Lagrange equations. A different approach based 

on the representation of the velocity u by three potentials, i.e. by auxiliary fields, has been established by Clebsch2, Lamb3, 

Panton4, but in its original form his approach is restricted to inviscid flows. Later modified forms of the Clebsch transformation 

have been applied successfully to magnetohydrodynamics (MHD)5 and plasma dynamics6. A generalized Clebsch 

transformation for viscous flow has been suggested by Scholle & Marner7, but the field equations resulting from it are not self-

adjoint. 

Since in viscous flow dissipation1 leads to an irreversible transfer of mechanical energy to heat, thermal degrees of 

freedom have to be considered in order to remain consistent with Noether’s theorem which implies conservation of energy for 

every Lagrangian being invariant with respect to time-translations. Seliger & Whitham8 made a first decisive step by establishing 

a Lagrangian that can be interpreted as a generalized form of Clebsch’s Lagrangian, supplemented by two additional fields: the 

specific entropy sand an additional field ϑ, introduced three decades previously by Van Dantzig9 as the material integral of the 

temperature T, i.e. Dtϑ=T, and termed thermasy, where Dt=∂/∂t+u⋅∇. 

Despite including thermal degrees of freedom, Seliger and Whitham’s approach remains restricted to adiabatic and 

therefore reversible processes. As a continuation of their work, Zuckerwar & Ash10 suggested an extended Lagrangian 

considering only volume viscosity, leading to equations of motion containing qualitatively the effect of volume viscosity but 

differing quantitatively from the compressible Navier–Stokes equations, also known as the Navier–Stokes–Duhem equations11,12 

without shear viscosity. They interpret their result as a generalization of the theory of viscous flow towards thermodynamic non-

equilibrium. Based on a rigorous analysis of the fundamental symmetries the Lagrangian has to fulfil, with particular regard to 

Galilean invariance13, Scholle & Marner14 suggested a Lagrangian for viscous flow considering both shear viscosity η and 

volume viscosity η′ reproducing Zuckerwar and Ash’s Lagrangian for the case η = 0. Again, the resulting equations of motion 

differ from the Navier–Stokes–Duhem equations. Considering six simple flow examples, two of them (steady shear flows) gave 

exact reproductions of the classical solutions, two other (transient flows) show the impact of viscosity on the flow at least in a 

qualitatively correct manner, whereas no physically reasonable solutions could be constructed for two pressure-driven flows. 

In order to resolve the above issue, Scholle & Marner14 made use of an analogy between quantum mechanics and fluid 

mechanics discovered by Madelung15 to formulate a new Lagrangian by relating the specific entropy s and the thermasy ϑ to a 

complex field χ, termed the field of thermal excitation by Anthony16, ending up with a discontinuous Lagrangian containing an 

additional parameter ω0. By a careful analysis it is proven that the dynamics resulting from Hamilton’s principle can consistently 
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be interpreted as a generalization of the theory of viscous flow towards thermodynamic non-equilibrium, with the 

parameter ω0 being the relaxation rate, giving rise to recovery of the well-known Navier–Stokes equations and the balance of 

inner energy when applying the limit ω0 → ∞ to the resulting equations of motion. 

The behavior of fluids in small spaces, with one of the characteristic dimensions of the order of few fluid particle 

diameters, can be significantly different from the bulk. Some of the well-studied features of such confined fluids are the 

formation of layering structure normal to the confining walls,1 inhomogenous pressure equation of state,1 appearance of surface 

induced phase transitions,2,3 and shift in the glass transition temperature.4,5 The scientific progress on some of the issues related 

to the behavior of confined fluids has been biased towards understanding the structural changes and associated thermodynamic 

properties due to confinement. In fact, now we have theories at our disposal which can predict the implications of confinement 

on the thermodynamic properties quantitatively over a wide range of conditions.6 On the contrary, the situation is not so 

satisfactory for predicting the dynamic behavior (such as the average self-diffusivity) of confined fluids.7–9 One of the reasons 

for this slow advancement on understanding fluid dynamics under confinement is the lack of tractable kinetic theories even for 

the bulk fluid behavior over the whole equilibrium fluid range. 

Recent studies have utilized a different strategy to predict the transport properties of fluids under confinement; their 

aim is to find empirical correlations between thermodynamic and dynamic quantities which remain approximately unchanged 

due to confinement.10–12 The thermodynamic quantity used to find such correlations can be as simple as the average fluid 

density,10 although significantly better results are obtained by using quantities such as the excess entropy10,11,13,14 of the fluid 

with respect to the ideal gas state and the available volume.12,15 The idea is to utilize these correlations obtained from the bulk 

fluid behavior along with the information about the thermodynamic property of confined fluids (which can be easily obtained 

via theory, molecular simulation, or laboratory experiment) to calculate the dynamic quantity with quantitative accuracy. This 

line of enquiry seems rather promising from the studies so far on equilibrium fluids as one can predict the effect of confinement 

on the self-diffusivity (or alternatively shear viscosity which follows trivially from the Stokes-Einstein relationship for 

equilibrium fluids) for a wide range of fluid models such as hard-sphere, Lennard-Jones (LJ), square well and others by utilizing 

“excess entropy-diffusivity”10,11 and “available volume-diffusivity”12 bulk relationships. 

The possible explanation for the observed correlations between these quantities of seemingly different origin 
(thermodynamic versus dynamic) even in the bulk has mostly been qualitative and there is no first principle based justification 

available. It has been argued that excess entropy should naturally be a quantity which will track the fluid dynamics as it 

characterizes the reduced number of states due to interparticle correlations.16 But it is not clear what the functional relationship 

should be17,18 and if there is a universal connection or something more like a parameteric fit with fitting coefficients dependent 

on the state of the fluid (density, temperature) and the type of fluid (strong versus fragile). Whether these correlations persist in 

the supercooled state is also somewhat an open question19 with previous work pointing towards the need for an additional 

adjustable parameter (as a function of density in case of binary Lennard-Jones20 and SPC/E water21). 

In this regard, recent results from the single particle barrier hopping theory of Schweizer and co-workers22may be an 

important step towards bridging the gap between observations and fundamental understanding. One specific result out of many 

predictions made by this theory is that the relaxation time (or inverse diffusivity D) for the bulk hard-sphere fluid should scale 

with the compressibility factor Z = βP/ρ as,23 

 (1) 

where β = [kBT]−1, kB is the Boltzmann constant, T is temperature, P is pressure, ρ is the fluid density, D0is an elementary 

diffusion scale, a is a numerical prefactor, φ = πρσ3/6 is the fluid packing fraction, and σ is the fluid diameter. A qualitative 

agreement with the predictions of eq 1 was already found in a previous work on the dynamics of polydisperse hard-sphere fluid 

which showed that the relaxation time as a function of Z for several different polydispersity values can be approximately 

collapsed onto a single curve.24 A quantitative comparison of eq 1 with the actual diffusion data will provide a useful starting 

point for understanding some of the outstanding issues related to the dynamics of supercooled fluids. As the focus of this paper 

is the equilibrium fluid dynamics under confinement, we will only touch upon this issue very briefly in the beginning of results 

and discussion section. Detailed results and the discussion on the supercooled fluid behavior from the perspective of eq 1 will 

be provided in a future publication. 

Here, instead we focus on the possiblity of D–Z relationship as observed in the bulk for an equilibrium hard-sphere fluid as a 

predictor of diffusion under confinement by utilizing the knowledge about its Z. For confined systems, pressure is a tensorial 

quantity (and therefore Z) and for a slit-pore system (fluid confined between walls in one direction) pressure has two components, 

parallel and normal to the walls. For average diffusion parallel to the walls (which will be the main dynamic quantity of interest 

in this work), we expect that the compressibility factor based on the average pressure component in the parallel direction will 

be relevant. As our fluid models, we consider both a single-component and a binary mixture of hard-sphere particles. For 

confinement models, we consider slit-pore geometry with hard walls and attractive square-well walls and rectangular channels 

with hard walls. We find that the bulk D–Zrelationship remains essentially unchanged due to these different types of confinement 

and can be successfully used to predict the diffusivity of confined fluids with quantitative accuracy for most of the state points. 

We further notice that any expected deviations from the exact diffusion values are generally negative (under-prediction) for low 

to intermediate density states and positive (overprediction) for high density states. Data from previous studies show that 

qualitatively similar deviations are expected from the excess entropy - diffusivity and available volume - diffusivity 

correlations.12 An attractive aspect of our observed correlation between the compressibility factor and diffusivity, as compared 

to previous work on other thermodynamic measures, is that one can calculate Z fairly easily using colloidal hard sphere 
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experiments in bulk (and possibly under confinement with appropriate modifications in the analysis)25 and in molecular 

simulations. 

Simulation 

We have used discontinuous molecular dynamics (DMD) simulations26 to track various thermodynamic and dynamic properties 

of the hard-sphere (HS) fluid model. The DMD simulations each involved N = 10000 HS particles contained within a simulation 

cell of volume V = Hx × Hy × Hz, where Hi is the box length in a given direction (i = x,y,z). Periodic boundary conditions were 

applied in all three directions for bulk and in two directions (x and y) for the slit-pore, and in one direction (x) for the rectangular 

channel. The non-periodic directions in case of confined fluids can be either smooth “hard” walls which are perfectly reflecting 

or “attractive” walls with a square-well potential between the fluid particles and the confining walls, 

 (2) 

where z represents the shortest distance between a given particle center and the wall of interest, and εw is the strength of the 

effective particle-wall interaction. We only consider hard walls in case of rectangular channels. 

The diffusivity D of the fluid was obtained by fitting the long-time behavior of the average mean-squared displacement of the 

particles to the Einstein relation ⟨Δr2d⟩=2dDt, where ⟨Δr2d⟩ corresponds to the mean-square displacement per particle in 

the d periodic directions after time t. To calculate the compressibility factor Z, we use the following form of the virial 

theorem,27,28 

 (3) 

where ri j is the position vector between particles i and j, vi is the change in velocity of particle i after the collision, N is the 

number of particles, and the summation is over all the collisions during the elapsed time te. In case of confined systems, the 

vector product includes only the periodic components of ri j and vi for Zparallel to the walls and non-periodic components 

for Z normal to the walls. We test our Z calculations against the GC-TMMC simulation results29,30 and find favorable comparison 

for both bulk and confined systems (less than 0.5%) difference.13,14 To simplify the notation in this paper, we have implicitly 

non-dimensionalized all quantities by appropriate combinations of a characteristic length scale (which we take to be the HS 

particle diameter σ) and time scale (which we choose to be  where m is particle mass). As a result, all quantities 

with dimensions of energy are understood to be “per kBT”, the only energy scale in the problem. 

Result 

Bulk hard-sphere fluid 

First we check the predictions of eq 1 for the bulk HS fluid. Although the barrier hopping theory in its ultralocal limit is expected 

to be valid for strongly supercooled liquids,23 we want to see if this can also provide some reasonable predictions for weakly 

supercooled and equilibrium fluid states. As we are using a monatomic fluid which is hard to supercool and will crystallize 

readily, it is not possible to access strongly supercooled regime. Figure 1 shows the D data plotted against φ (top panel) as well 

as (Z−1)2/φ(bottom panel) as expected from eq 1 for φ ≤ 0.53. We are able to fit the data for most of the dense fluid range (D < 

0.1 and φ > 0.40) to eq 1. Equation 1 is only valid for fluid states above the ideal glass transition packing fraction (φi = 0.432) 

at which the activated barrier hopping dynamics becomes important22 and the deviations seen in Figure 1 at low density are 

therefore expected. We also show the inverse viscosity 1/η on the same plot and the expected fit from the Stokes-Einstein 

relationship, i.e., Dη = 1/2π in the bottom panel. To verify that the fluid systems between φ = 0.49 to φ = 0.53 are not phase 

separated (as coexistence between the fluid-solid phase for the HS model is between φ = 0.494−0.545),we check the time 

evolution of Z as well as several other order parameters, e.g., bond-orientationl order Q6, pair-correlation function g(r), 

translational order parameter s2 and do not find any evidence of phase separation at the time scale of the simulations. Of course, 

if we run the simulations for long enough, these state points will show fluid and solid phases in coexistence. We use a similar 

approach to identify stable and metastable (at the simulation timescales) state points for the confined HS system for which the 

location of the fluid-solid phase boundary may not be known apriori. In future we will investigate whether the trends observed 

here also hold in the deeply supercooled state by utilizing a polydisperse HS fluid to avoid crystallization. 
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 Figure 1 

Bulk data. (Top panel) Diffusivity D and inverse viscosity 1/η data are plotted as a function of φ. (Bottom panel) 

Diffusivity D and inverse viscosity 1/η data are plotted as a function of (Z−1)2/φ along with a ... 

Next, we want to examine if the correspondence between D and Z observed in the bulk is unchanged due to confinement and 

can therefore be used as a predictive tool for confined fluid diffusivity. To facilitate this process, we fit our bulk data to an 

analytic functional form34 D = f (Z) as shown in the inset of Figure 1. To simplify the analysis we have used D–Z relationship 

but D−(Z−1)2/φ can also be used for rest of the analysis in this paper. Further, we plot the ratio of the actual DMD data and f (Z) 

to assess the reliability of our fit, and find overall good agreement with less than 5% error for Z > 5. From now onwards we will 

use f(Z) as a functional representation of our bulk D data. 

Hard-sphere fluid confined between hard walls 

First, we test the effect of hard-wall confinement on the D–Z relationship. Figure 2 shows the data for bulk HS (solid line), HS 

confined between slit-pores of size H = Hz, and rectangular channels with dimensions Hy × Hz. Overall, the collapse of confined 

fluid data on the bulk curve is good suggesting that f (Z) can be used as a predictor of diffusivity if Z for the confined fluid is 

known. For more restrictive confinements, e.g., in rectangular channels and for a slit-pore of size H = 4, D–Z curves have a 

different slope from the bulk curve which gives rise to underprediction in D from f (Z) at intermediate Z and overprediction 

in D at high Z as shown in the inset of Figure 2. The Z-range (or alternatively φ-range) considered here covers most of the 

equilibrium state points as known from the exact fluid-solid phase diagram. 

 Figure 2 
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Hard wall confinement. Diffusivity D versus compressibility factor Zfor hard-sphere fluid in bulk (line) and confined between 

hard-walls (symbols). The ratio D/f (Z) as a function of Z is also shown in the inset. 

Hard-sphere fluid confined between attractive walls 

To test if D–Z correspondence is still valid when we introduce fluid-wall interactions, we calculate these quantities for systems 

with varying attraction strength εw (eq 2). Figure 3 shows the bulk HS data (line) along with the confined fluid data (symbols) 

which demonstrates that indeed the D–Z relationship remains unchanged. To assess quantitative differences, we plot D/f (Z) in 

the inset of Figure 3 which shows that difference between the bulk and confined diffusivity based on Z is less than 10% for 75% 

of the state points and always less than 15%. 

 Figure 3 

Attractive wall confinement. Diffusivity D versus compressibility factor Z for hard-sphere fluid in bulk (line) and confined 

between attractive walls represented by a square-well potential eq. 2(symbols). The ratio D/f (Z) as a function of Z is also ... 

Conclusion 

We have shown that the relationship between a thermodynamic and a dynamic quantity, i.e., between “diffusivity and 

compressibility factor” can be used to predict the effect of confinement on fluid diffusivity. Along with the knowledge of bulk D–

Z relationship, the information about the confined fluid's compressiblity factor is needed which can be easily estimated from 

experiments or approximated using existing theoretical approaches such as the density functional theory. This provides an 

indirect but quantitative route to predict confined fluid diffusivity based on its thermodynamics. One of the interesting features 

about the observed D–Z correlations is that the barrier hopping theory for supercooled fluid dynamics in its ultralocal limit 

predicts such an expectation for a bulk hard-sphere fluid and a precise functional form for these correlations. We find that this 

expected functional dependency is satisfied for a single-component hard-sphere fluid in a weakly supercooled state and even in 

the equilibrium fluid state. In future work, we will focus on understanding the D–Z correlations for supercooled fluids in bulk 

and under confinement by utilizing polydisperse fluids to thwart crystallization and size segregation. We are currently also 

investigating if D–Z correlations can be used to predict the effect of confinement on dynamics for attractive fluids with square-

well or Lennard-Jones interactions. 
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