Low Cost Journal,International Peer Reviewed and Refereed Journals,Fast Paper Publication approved journal IJEDR(ISSN 2321-9939) apply for ugc care approved journal, UGC Approved Journal, ugc approved journal, ugc approved list of journal, ugc care journal, care journal, UGC-CARE list, New UGC-CARE Reference List, UGC CARE Journals, ugc care list of journal, ugc care list 2020, ugc care approved journal, ugc care list 2020, new ugc approved journal in 2020, Low cost research journal, Online international research journal, Peer-reviewed, and Refereed Journals, scholarly journals, impact factor 7.37 (Calculate by google scholar and Semantic Scholar | AI-Powered Research Tool)
(International Peer Reviewed,Refereed, Indexed, Citation Open Access Journal)
ISSN: 2321-9939 | ESTD Year: 2013

Current Issue

Call For Papers
June 2023

Volume 11 | Issue 2
Last Date : 29 June 2023
Review Results: Within 12-20 Days

For Authors


Indexing Partner

Research Area


Paper Details
Paper Title
multi-scale segmentation for detecting mass in mammograms using deep learning techniques
  Seema Saknure,  Dr. Deepa Deshpande

This paper tends to the issue of fragmenting an image into the segment. We characterize a predicate for estimating the proof for a limit between two districts utilizing a diagram based portrayal of the picture. We at that point build up an efficient division calculation dependent on this predicate and demonstrate that in spite of the fact that this calculation settles on ravenous choices it produces divisions that fulfill worldwide properties. We apply the calculation to picture division utilizing two different sorts of nearby neighborhoods in building the chart and show the outcomes with both genuine and engineered pictures. The calculation keeps running in time about straight in the number of chart edges and is additionally quick by and by. A significant normal for the strategy is its capacity to safeguard detail in low-changeability picture districts while overlooking points of interest in high-fluctuation locales. Convolution Neural Networks (CNNs) are investigated in the context of computer-aided diagnosis (CADx) of breast cancer. State-of-the-art CNNs are trained and evaluated on two mammographic datasets, consisting of ROIs depicting benign or malignant mass lesions. The performance evaluation of each examined network is addressed in two training scenarios: the first involves initializing the network with pre-trained weights, while for the second the networks are initialized in a random fashion. Extensive experimental results show the superior performance achieved in the case of fine-tuning a pre trained network compared to training from initial stages respectively. Our purpose is to develop a mammography-based DL breast cancer risk model that is more accurate than established clinical breast cancer risk models. We propose a novel approach for detecting and segmenting breast masses in mammography based on multi-scale morphological filtering and a self-adaptive cascade of random forests (CasRFs). CasRFs can cope with severe class imbalance by adding layers to the cascade until a minimum number of false-positives (FPs) is reached.

Keywords- cancer,mammogram,machine learning ,svm
Publication Details
Unique Identification Number - IJEDR2002067
Page Number(s) - 395-401
Pubished in - Volume 8 | Issue 2 | April 2020
DOI (Digital Object Identifier) -   
Publisher - IJEDR (ISSN - 2321-9939)
Cite this Article
  Seema Saknure,  Dr. Deepa Deshpande,   "multi-scale segmentation for detecting mass in mammograms using deep learning techniques", International Journal of Engineering Development and Research (IJEDR), ISSN:2321-9939, Volume.8, Issue 2, pp.395-401, April 2020, Available at :http://www.ijedr.org/papers/IJEDR2002067.pdf
Share This Article

Article Preview

ISSN Details

DOI Details

Providing A digital object identifier by DOI
How to get DOI?

For Reviewer /Referral (RMS)

Important Links

NEWS & Conference

Digital Library

Our Social Link

© Copyright 2024 IJEDR.ORG All rights reserved