This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License



|
||||||||
|
Paper Details
Paper Title
Analysis And Design Of High Rise Building, Effect Of wind And Sesimic Loads On High Rise Building
Authors
  Venkata Sivaraju Sarikonda,  Jayaseela Jonnalagadda
Abstract
Modern tall buildings have efficient structural systems, and utilize high-strength materials, resulting in reduced building height, and thus, become more slender and flexible with low damping. These flexible buildings are very sensitive to wind excitation and earthquake load causing discomfort to the building occupants. Therefore, in order to mitigate such an excitation and to improve the performance of tall buildings against wind loads and earthquake loads, many researches and studies have been performed.
Early integration of aerodynamic shaping, wind engineering considerations, and structural system selections play a major role in the architectural design of a tall building in order to mitigate the building response to the wind excitations. A tall building, whose shape is unsuitable, often requires a great deal of steel or a special damping mechanism to reduce its dynamic displacement within the limits of the criterion level for the design wind speed. Understandably, an appropriate choice of building shape and architectural modifications are also extremely important and effective design approaches to reduce wind and earthquake induced motion by altering the flow pattern around the building, hence for this research work four different shaped buildings are generally studied namely circular, rectangular, square and triangular.
To achieve these purposes, firstly, a literature survey, which includes the definition, design parameters, and lateral load considerations of tall buildings, is presented. Then the results are interpreted for different shaped buildings and of different stories thereby concluding as to which shaped high rise building is most stable for different conditions
Modern tall buildings have efficient structural systems, and utilize high-strength materials, resulting in reduced building height, and thus, become more slender and flexible with low damping. These flexible buildings are very sensitive to wind excitation and earthquake load causing discomfort to the building occupants. Therefore, in order to mitigate such an excitation and to improve the performance of tall buildings against wind loads and earthquake loads, many researches and studies have been performed.
Early integration of aerodynamic shaping, wind engineering considerations, and structural system selections play a major role in the architectural design of a tall building in order to mitigate the building response to the wind excitations. A tall building, whose shape is unsuitable, often requires a great deal of steel or a special damping mechanism to reduce its dynamic displacement within the limits of the criterion level for the design wind speed. Understandably, an appropriate choice of building shape and architectural modifications are also extremely important and effective design approaches to reduce wind and earthquake induced motion by altering the flow pattern around the building, hence for this research work four different shaped buildings are generally studied namely circular, rectangular, square and triangular.
To achieve these purposes, firstly, a literature survey, which includes the definition, design parameters, and lateral load considerations of tall buildings, is presented. Then the results are interpreted for different shaped buildings and of different stories thereby concluding as to which shaped high rise building is most stable for different conditions
Modern tall buildings have efficient structural systems, and utilize high-strength materials, resulting in reduced building height, and thus, become more slender and flexible with low damping. These flexible buildings are very sensitive to wind excitation and earthquake load causing discomfort to the building occupants. Therefore, in order to mitigate such an excitation and to improve the performance of tall buildings against wind loads and earthquake loads, many researches and studies have been performed.
Modern tall buildings have efficient structural systems, and utilize high-strength materials, resulting in reduced building height, and thus, become more slender and flexible with low damping. These flexible buildings are very sensitive to wind excitation and earthquake load causing discomfort to the building occupants. Therefore, in order to mitigate such an excitation and to improve the performance of tall buildings against wind loads and earthquake loads, many researches and studies have been performed.
Keywords- High-rise Building, Wind load Effect, Earthquake load effect
Publication Details
Unique Identification Number - IJEDR2003017Page Number(s) - 97-111Pubished in - Volume 8 | Issue 3 | August 2020DOI (Digital Object Identifier) -    http://doi.one/10.1729/Journal.24217Publisher - IJEDR (ISSN - 2321-9939)
Cite this Article
  Venkata Sivaraju Sarikonda,  Jayaseela Jonnalagadda,   "Analysis And Design Of High Rise Building, Effect Of wind And Sesimic Loads On High Rise Building", International Journal of Engineering Development and Research (IJEDR), ISSN:2321-9939, Volume.8, Issue 3, pp.97-111, August 2020, Available at :http://www.ijedr.org/papers/IJEDR2003017.pdf
Article Preview
|
|
||||||
|